Abstract:
The heterogeneous procatalyst of this disclosure includes a titanium species; a hydrocarbon soluble transition metal compound having a structure M(OR1)z; a chlorinating agent having a structure A(Cl)x(R2)3-x, and a magnesium chloride component. M of M(OR1)z is a non-reducing transition metal other than titanium, the non-reducing transition metal being in an oxidation state of +2 or +3. Each R1 is independently (C1-C30)hydrocarbyl or —C(O)R11, where R11 is (C1-C30)hydrocarbyl. Subscript z of M(OR1)z is 2 or 3. Each R1 and R11 may be optionally substituted with one or more than one halogen atoms, or one or more than one —Si(RS)3, where each RS is (C1-C30)hydrocarbyl. A of A(Cl)x(R2)3-x is aluminum or boron; R2 is (C1-C30)hydrocarbyl; and x is 1, 2, or 3; and a magnesium chloride component.
Abstract:
Zero-valent silver compositions include 4-dimethylaminopyridine as stabilizers. The zero-valent silver and the 4-diemthylaminopyridine form stabilized nano-particles in solution. The zero-valent silver compositions may be used as catalysts in the metallization of non-conductive substrates.
Abstract:
A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
Abstract:
A procatalyst including a preformed magnesium chloride catalyst support having a surface area of greater than or equal to 100 m2/g, a titanium containing component, a chlorinating agent, and a hydrocarbon soluble transition metal compound having an oxidation state of greater than or equal to 5+. The hydrocarbon soluble transition metal compound having an oxidation state of greater than or equal to 5+ is not vanadium.
Abstract:
The catalyst system includes a heterogeneous procatalyst, an electron donor, and a hydrogenation procatalyst. The heterogeneous procatalyst includes a titanium species, an aluminum species, and a magnesium chloride component. The hydrogenation procatalyst has the formula Cp2TiXnTiCp2 or Cp2TiXn. In formula Cp2TiXn, each Cp is a cyclopentadienyl substituted with at least one R1, wherein R1 is (C1-C10)alkyl; and each X is independently monoanionic or neutral, wherein each X is independently (C1-C40)hydrocarbon, (C1-C40)heterohydrocarbon, (C1-C40)hydrocarbyl, (C1—C40)heterohydrocarbyl, or a halogen atom.
Abstract:
The catalyst system includes a heterogeneous procatalyst and a hydrogenation procatalyst. The heterogeneous procatalyst includes a titanium species, an aluminum species, and a magnesium chloride component. The hydrogenation procatalyst has the formula Cp2TiX2, In formula Cp2TiX2, each Cp is a cyclopentadienyl substituted with at least one R1, wherein R1 is (C1-C10)alkyl; and each X is independently a halogen atom.
Abstract:
Embodiments of the present disclosure are specifically related to LLDPE compositions produced from heterogeneous procatalyst compositions and blown and cast films incorporating these LLDPE compositions.
Abstract:
A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (═O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.