摘要:
A projection system including light emitting units, a scrolling unit, and a light valve. The light emitting units emitting light beams of different wavelengths. The scrolling unit has spirally arranged cylinder lens cells which separate the light beams into color beams and scroll the color beams when the scrolling unit is rotated. The light valve receives, at different positions, the color beams transmitted by the scrolling unit and forms a color image by turning pixels on or off according to an input image signal.
摘要:
A high-efficiency, compact color illuminating system and a projection type image display apparatus using the color illuminating system are provided. The color illuminating system includes a light source, a spiral lens disc that periodically scrolls light by rotational movement, and an optical unit that isolates light beams of different wavelengths from white light emitted from the light source and guides the isolated light beams to enter at least two effective regions of the spiral lens disc. The projection type image display apparatus includes the color illuminating system, an image forming unit that generates images using scrolling light from the spiral lens disc, and a projection lens unit that enlarges and projects the images formed by the image forming unit on a screen.
摘要:
A highly efficient projection system is provided, including a light source, a color separator, a scrolling unit, a light valve, a projection lens unit, and a polarization conversion system. The color separator separates an incident beam according to color. The scrolling unit includes at least one lens cell and converts a rotation of the lens cell into a rectilinear motion of an area of the lens cell through which light passes so the incident beam is scrolled. The light valve processes a beam transmitted by the color separator and the scrolling unit, according to an image signal and forms a color picture. The projection lens unit magnifies the color picture formed by the light valve and projects the magnified color picture onto a screen. The polarization conversion system is installed between the color separator and the light valve and converts the incident beam into a beam with a single polarization.
摘要:
A highly efficient lighting system, a scrolling unit, and a projection system adopting the highly efficient lighting system and the scrolling unit are provided. The scrolling unit has at least one lens cell. From the viewpoint of light incident upon the at least one lens cell, the rotation of the at least one lens cell is converted into a rectilinear motion of a lens array, such that incident light is scrolled. The projection system includes a light source, an optical splitter, at least one scrolling unit, and a light valve. The optical splitter splits light emitted from the light source according to wavelength. The at least one scrolling unit has at least one lens cell. The lens cell has an incident side and an emitting side and divides incident light into light beams. The rotation of the lens cell causes a rectilinear motion of the light beams, thereby scrolling incident light. The light emitted from the light source is separated into color beams by the optical splitter and the scrolling unit, and the color beams are focused on the light valve. The light valve processes incident light according to an input image signal in order to form a color image.
摘要:
There is provided a projection lens unit for a pico-projector which comprises a lens array, a color composition prism, a cover glass and an image panel, the projection lens unit characterized in that: the lens array includes 1st to 6th lenses sequentially arrayed from a screen on which an image is projected, the 1st lens includes a stop side formed on a 1st side of the 1st lens, the stop side stops the passage of light, to perform the function of a diaphragm aperture, light passing from the 1st lens to the 6th lens travels in only one direction of the lens sides based on the diaphragm aperture, and parts of the lens sides through which the light does not pass are cut so that the whole height of the lens array is reduced.
摘要:
There is provided a lighting apparatus using a filter and a condenser for LED illumination in which an optical filter to obtain diverse optical patterns as a user desires is connected to a condenser for LED illumination without using any additional device.The lighting apparatus in which the optical filter can be exchanged comprises: a LED for generating a light source for illumination, a condenser for concentrating the light source generated from the LED, and an optical filter connected to the condenser, for providing an optical pattern, wherein the optical filter is connected to the condenser so as to be attachable to or detachable from the condenser.
摘要:
A focusing lens for an LED is provided. The focusing lens for an LED, which concentrates light emitted from the LED so as to have directionality parallel to an optic axis, comprises: a transparent body; a first lens part formed in the body; and a second lens part covering the first lens, and wherein the first lens comprises: first and second aspheric lens surfaces which are convex in different sizes and are formed on planes being symmetric to each other; and wherein the second lens comprise: a plane of incidence formed to protrude from an outer circumference of the second aspheric lens surfaces, the plane of incidence into which the LED is inserted and which is configured to allow the light emitted from the LED to be incident and refracted; a plane of reflection formed to have a convex curved surface which extend and slopes to be progressive wider from the plane of incidence towards the second aspheric lens surface, the plane of reflection which is configured to allow the light emitted from the LED to be totally reflected; and a plane of emission formed to have a concave curved surface which extends and slopes from the plane of reflection towards the second aspheric lens surface, the plane of emission which is configured to allow the light emitted from the LED to be refracted and emitted as light being parallel to the optic axis. The focusing lens minimizes a loss of the light emitted from the LED and maximally reduces an angle of the emitted light, to effectively illuminate a local region at a long distance.
摘要:
A projection lens unit for a pico-projector includes a plurality of plastic lenses and a single glass lens to minimize a change in focal length due to the heat generated inside the pico-projector. The lens array includes: a 1st lens with negative (−) refractive power, a 2nd lens with positive (+) refractive power, a 3rd lens with negative (−) refractive power, a 4th lens with negative (−) refractive power, and a 5th lens with positive (+) refractive power, wherein the 1st to 5th lenses are arranged in order from a screen upon which an image is projected, the 1st to 4th lenses are plastic lenses and the 5th lens is a glass lens.
摘要:
A projection lens unit for a pica-projector includes a plurality of plastic lenses and a single glass lens to minimize a change in focal length due to the heat generated inside the pico-projector. The lens array includes: a 1st lens with negative (−) refractive power, a 2nd lens with positive (+) refractive power, a 3rd fens with negative (−) refractive power, a 4th lens with negative (−) refractive power, and a 5th lens with positive (+) refractive power, wherein the 1st to 5th lenses are arranged in order from a screen upon which an image is projected, the 1st to 4th lenses are plastic lenses and the 5th lens is a glass lens.
摘要:
A projection lens unit for a pico-projector includes a plurality of plastic lenses and a single glass lens to minimize a change in focal length due to the heat generated inside the pico-projector. The lens array includes: a 1st lens with negative (−) refractive power, a 2nd lens with positive (+) refractive power, a 3rd lens with negative (−) refractive power, a 4th lens with negative (−) refractive power, and a 5th lens with positive (+) refractive power, wherein the 1st to 5th lenses are arranged in order from a screen upon which an image is projected, the 1st to 4th lenses are plastic lenses and the 5th lens is a glass lens.