Abstract:
An optical scanning unit includes a light source, an optical deflector that includes a light transmission window disposed on a light path from the light source and a rotatable mirror that includes a reflecting surface to reflect light that goes through the light transmission window into the light transmission window and to deflect the light from the light source toward a surface, and a light shield disposed on a light path of reflected light of the light from the light source reflected by a surface of the light transmission window.
Abstract:
In an optical scanning device employing a multi-beam scanning method, a surface emitting laser light source includes laser emission sources; a parallel-plate-like quarter wavelength plate is arranged between the surface emitting laser light source and a first optical system; a light-intensity detecting unit separates light intensity of the laser beams of which form is converted by the first optical system and detects separated laser beams; and a light-intensity adjusting unit adjusts emission intensity of the laser emission sources individually based on a detection result by the light-intensity detecting unit. The quarter wavelength plate is arranged so that an optical axis thereof is tilted ±45 degrees with respect to the main-scanning direction around an optical axis of the first optical system.
Abstract:
In an optical scanning device, a lateral magnification in a direction corresponding to a sub scanning direction of an optical system is adjusted to be small by a coupling optical system that includes a first lens and a second lens. As a result, scanning by a plurality of light beams can be performed with high precision while avoiding high costs.
Abstract:
An image display apparatus includes an image forming unit and a vehicle provided with the image display apparatus. The image forming unit includes a light source unit configured to emit light, an optical scanner configured to scan the light emitted from the light source unit two-dimensionally in a main scanning direction and a sub-scanning direction, and an intermediate image forming unit configured to form an intermediate image by the light scanned by the optical scanner. The image forming unit satisfies 0.3
Abstract:
Disclosed is an image display device for displaying an image on a screen. The image display device includes an image forming element configured to optically scan a screen, and an optical member disposed between the screen and the image forming element, and being configured to reflect light, where the optical member is disposed such that the reflected light, along normals with respect to every reflecting point on the optical member, is directed away from the screen.
Abstract:
An image display device includes a display unit configured to display a display image and to use a color information target value as a color information value of a display color, the display color being a color of the displayed image; and a first image correction unit configured, in a case where the color information value of the display color of the display image obtained by capturing the display image displayed by the display unit is different from the color information target value, to correct the color information value of the display color of the displayed image displayed by the display unit, so that the color information value of the display color of the display image obtained by capturing the display image displayed by the display unit becomes the color information target value.
Abstract:
An optical scanning apparatus for scanning a target surface using a plurality of light beams simultaneously along a first direction of the target surface. The apparatus has a light source having a plurality of light emitting elements; an optical deflector to deflect the plurality of light beams coming from the light source; and a scanning optical system to guide the plurality of light beams deflected by the optical deflector to the target surface. The scanning optical system includes a lens, disposed after the optical deflector, having the strongest power in a second direction perpendicular to the first direction. A plurality of scan lines, corresponding to the plurality of light beams deflected by the optical deflector, intersect or contact each other at an optical face of the lens.
Abstract:
A light source device includes a light source, a coupling lens, a first opening plate, a second opening plate, a photoreceptor, a package member, a cover glass, a half mirror, and a light source control device. In relation to a main-scanning corresponding direction and a sub-scanning corresponding direction, divergence angles θm and θs of a light beam output from the light source, emission angles θm1 and θs1 of a light beam passing through an opening portion A, and emission angles θm2 and θs2 of a light beam passing through an opening portion B satisfy relationships |(θm1-θm2)/θm|≦0.085 and |(θs1-θs2)/θs|≦0.085.
Abstract:
An optical scanning device which scans a scanned surface by a plurality of light beams in a main-scanning direction includes a light source having a plurality of light-emitting portions which emit the light beams, the light-emitting portions being two-dimensionally arranged in a plane parallel to the main-scanning direction and a sub-scanning direction orthogonal to the main-scanning direction via arrangement intervals in the main-scanning direction and the sub-scanning direction, a deflector which scans the light beams in the main-scanning direction; and a scanning optical system which images the scanned light beams onto the scanned surface.
Abstract:
A deflecting unit deflects a plurality of light fluxes from a light source including a plurality of light emitting elements arranged in two-dimensional array. An coupling optical system between the light source and the deflecting unit includes an optical coupling element that collimates the light fluxes and a line-imaging element that images the light fluxes near the deflecting unit in a sub-scanning direction. A holding unit holds the line-imaging element in a state that a position of the line-imaging element is adjusted with respect to a direction parallel to the sub-scanning direction. A scanning optical system condenses the deflected light fluxes on the scanning surface.