Abstract:
The invention belongs to the field of plasma chemistry technology, and it involves a method of methanol conversion. Some electric discharge methods, such as dielectric barrier discharge (DBD), corona discharge, pulse corona discharge, glow discharge, etc. were used to selectively excite methanol molecule. The reactant residence time, temperature, pressure and carrier gas/methanol mole proportion were regulated to convert methanol to the objective products. The present invention mainly used methanol as raw material to synthesis ethylene glycol (EG). This method is a one-step synthesis technology, non-catalyst, environmental pollution-free and high selectivity to the EG. Moreover, methanol was a sustainable resource which can be obtained by many approaches. In this invention, ethanol, n-propanol were also obtained together with EG by the optimizing of reaction conditions, so this technology has great industrial prospects.
Abstract:
An alkali metal ion modified titanium silicalite zeolite TS-1 for gas phase epoxidation of propylene and hydrogen peroxide and a preparation method thereof. The method includes: 1: preparing an alkali metal hydroxide modification solution containing a small amount of TPA+ ions; 2: conducting a controlled hydrothermal treatment on a TS-1 zeolite matrix by using the alkali metal hydroxide solution containing a small amount of TPA+ ions; and 3: conducting post-treatment on the hydrothermally modified TS-1 zeolite. In the washing process, the modified TS-1 zeolite wet material is washed with a low concentration alkali metal hydroxide solution; and alkali metal ions are reserved on the silicon hydroxyl of the modified titanium silicalite zeolite. The prepared alkali metal ion modified titanium silicalite zeolite has significantly improved catalytic performance in the gas phase epoxidation of propylene and hydrogen peroxide.
Abstract:
An alkali metal ion modified titanium silicalite zeolite for gas phase epoxidation of propylene and hydrogen peroxide and a preparation method thereof. The method includes, at first step: preparing an alkali metal hydroxide modification solution; at second step: conducting controlled hydrothermal treatment on a TS-1 zeolite matrix by using an alkali metal hydroxide solution; and at third step: conducting post-treatment on the hydrothermally modified TS-1 zeolite, including solid-liquid separation, washing, drying and calcining. In the washing process, the modified TS-1 zeolite wet material is washed with a low concentration alkali metal hydroxide solution; alkali metal ions are reserved on the silicon hydroxyl of the modified titanium silicalite zeolite; and an infrared characteristic absorption band of a framework titanium active center modified by the alkali metal ions is in a range above 960 cm−1 and below 980 cm−1.
Abstract:
A fluidized reaction method for synthesizing propylene oxide by gas phase epoxidation of propylene and hydrogen peroxide relates to a microspherical alkali metal ion modified titanium silicalite zeolite TS-1 catalyst applicable to the reaction method, and a preparation method thereof. A gas-solid phase fluidized epoxidation method refers to a gas phase epoxidation method in which the raw materials of propylene and hydrogen peroxide are directly mixed in the gas phase under normal pressure and temperature above 100° C. and the feed gas enables the titanium silicalite zeolite TS-1 catalyst to be fluidized in an epoxidation reactor. A catalyst applicable to the reaction method is a microspherical alkali metal ion modified titanium silicalite zeolite TS-1 catalyst which has the main characteristic that alkali metal cations are reserved on the titanium silicalite zeolite.
Abstract:
This invention belongs to the technical field of inorganic chemical synthesis, relating to a modification method for titanium-silicalite zeolite (TS-1). The feature of the invention is pretreating the TS-1, after that the TS-1 is modified by the mixture of quaternary ammonium salts and inorganic base. The quaternary ammonium salts mentioned above include tetrapropylammonium fluoride, tetrapropylammonium chloride, tetrapropylammonium iodide and their mixture. The inorganic base include that LiOH, NaOH and KOH and their mixture. TS-1 after the modification is aftertreated at last. The benefit of the invention is universal capable to modify the TS-1 synthesized by any method, specially the TS-1 with low cost method, the modification can enhance the catalytic performance on both gas and liquid phase epoxidation of propylene.