摘要:
Method of plating using a polymeric barrier layer including a polyphenolic polymer which has a repeating unit of the formula: wherein R1, R2, R3, R4, and R5 are individually hydrogen, a hydroxy group or an azo dye.
摘要翻译:使用包含具有下式重复单元的多酚聚合物的聚合物阻挡层的电镀方法:其中R 1,R 2,R 3, R 4,R 5和R 5分别是氢,羟基或偶氮染料。
摘要:
A process for electroplating and annealing thin-films of nickel-iron alloys having from 63% to 81% iron content by weight to produce pole pieces having saturation flux density (BS) in the range from 1.9 to 2.3 T (19 to 23 kG) with acceptable magnetic anisotropy and magnetostriction and a coercivity (HC) no higher than 160 A/m (2 Oe). The desired alloy layer properties, including small crystal size and minimal impurity inclusions, can be produced by including higher relative levels of Fe++ ions in the electroplating bath while holding the bath at a lower temperature while plating from a suitable seed layer. The resulting alloy layer adopts a small crystal size (BCC) without significant inclusion of impurities, which advantageously permits annealing to an acceptable HC while retaining the high BS desired.
摘要翻译:电镀和退火铁含量为63%至81%的镍铁合金薄膜的方法,以产生具有饱和磁通密度(B S S S S)的范围在1.9至 2.3 T(19〜23kG)具有可接受的磁各向异性和磁致伸缩,矫顽力(H C C)不高于160A / m(2Oe)。 包括小晶体尺寸和最小杂质夹杂物在内的期望的合金层性能可以通过在电镀浴中包含更高的相对水平的Fe ++离子而制备,同时将浴保持在较低温度,同时从 合适的种子层。 所得到的合金层采用小晶粒尺寸(BCC),而不显着地包含杂质,这有利地允许退火到可接受的H C,同时保持所需的高B S S S。
摘要:
A method for fabricating a non-electroplated shield using combination patterning and devices formed thereby are disclosed. The method includes depositing a metal layer, such as CZT, removing substantially 75% of the metal layer during a first phase using at least a first removal process and removing a remaining portion of the metal layer during a second phase using at least a second removal process. The first removal process may include depositing a first patterning layer, removing substantially 75% of the metal layer by ion-mill or similar technology and stripping the first patterning layer away. The second removal process may include depositing a second patterning layer and removing the remaining portion of the metal layer using a wet-etch or other etch process and removing the second patterning layer. The deposited metal layer may have a thickness up to several μm and the edges of the shield exhibit a unique step pattern that is visible in a cross-section view of the shield.
摘要:
A magnetic head including first and a second magnetic poles with a write gap layer disposed therebetween. In a first embodiment the write gap layer includes a non-magnetic, non-conductive first sublayer which is preferably comprised of Ta or Ti which is deposited upon the first magnetic pole to act as an adhesion layer. The write gap layer then includes a second sublayer which is formed of a non-magnetic, electrically conductive material which is preferably comprised of Rh or Ru. A P2 pole tip is electroplated upon the second sublayer, where the electrically conductive second sublayer is utilized to conduct electroplating current. In an alternative embodiment the write gap layer includes a third sublayer that is etchable in a reactive ion etch (RIE) process, and formed between the first and second sublayers. The third sublayer is preferably comprised of Ta or Ti.