摘要:
Reconfigurable antennas in an ad-hoc network are provided where all nodes employ MIMO/SIMO/MISO communication techniques. Three types of reconfigurable antennas: Reconfigurable Printed Dipole Array (RPDA), Reconfigurable Circular Patch Antenna (RCPA) and Two-Port Reconfigurable CRLH Leaky Wave Antennas are used. The RPDA, RCPA and the CRLH Leaky Wave antennas have a different number of configurations as well as different degrees of pattern diversity between possible configurations. To effectively use these antennas in a network, the performance of centralized and decentralized antenna configuration selection schemes are quantified for reconfiguration at one or both link ends. The sum capacity of the network is used as a metric to quantify the performance of these antennas in measured and simulated network channels.
摘要翻译:在所有节点采用MIMO / SIMO / MISO通信技术的情况下,提供了自组织网络中的可重新配置的天线。 三种类型的可重构天线:可重构可编配偶极阵列(RPDA),可重配置圆形补片天线(RCPA)和双端口可重构CRLH泄漏波天线。 RPDA,RCPA和CRLH泄漏波天线在可能的配置之间具有不同的配置数量以及不同程度的模式分集。 为了在网络中有效地使用这些天线,集中式和分散式天线配置选择方案的性能被量化以在一个或两个链路端重新配置。 网络的总容量用作量度这些天线在测量和模拟网络信道中的性能的度量。
摘要:
Reconfigurable antennas in an ad-hoc network are provided where all nodes employ MIMO/SIMO/MISO communication techniques. Three types of reconfigurable antennas: Reconfigurable Printed Dipole Array (RPDA), Reconfigurable Circular Patch Antenna (RCPA) and Two-Port Reconfigurable CRLH Leaky Wave Antennas are used. The RPDA, RCPA and the CRLH Leaky Wave antennas have a different number of configurations as well as different degrees of pattern diversity between possible configurations. To effectively use these antennas in a network, the performance of centralized and decentralized antenna configuration selection schemes are quantified for reconfiguration at one or both link ends. The sum capacity of the network is used as a metric to quantify the performance of these antennas in measured and simulated network channels.
摘要翻译:在所有节点采用MIMO / SIMO / MISO通信技术的情况下,提供了自组织网络中的可重新配置的天线。 三种类型的可重构天线:可重构可编配偶极阵列(RPDA),可重配置圆形补片天线(RCPA)和双端口可重构CRLH泄漏波天线。 RPDA,RCPA和CRLH泄漏波天线在可能的配置之间具有不同的配置数量以及不同程度的模式分集。 为了在网络中有效地使用这些天线,集中式和分散式天线配置选择方案的性能被量化以在一个或两个链路端重新配置。 网络的总容量用作量度这些天线在测量和模拟网络信道中的性能的度量。
摘要:
A method allows reconfigurable multi-element antennas to select the antenna configuration in MIMO, SIMO and MISO communication system. This selection scheme uses spatial correlation, channel reciprocal condition number, delay spread and average Signal to Noise Ratio (SNR) information to select the antenna radiation pattern at the receiver. Using this approach, it is possible to achieve capacity gains in a multi-element reconfigurable antenna system without modifying the data frame of a conventional wireless communication system. The capacity gain achievable with this configuration selection approach is calculated through numerical simulations using reconfigurable circular patch antennas at the receiver of a MIMO system that employs minimum mean square error receivers for channel estimation. Channel capacity and Bit Error Rate (BER) results show the improvement offered relative to a conventional antenna selection technique for reconfigurable MIMO systems.
摘要:
A method allows reconfigurable multi-element antennas to select the antenna configuration in MIMO, SIMO and MISO communication system. This selection scheme uses spatial correlation, channel reciprocal condition number, delay spread and average Signal to Noise Ratio (SNR) information to select the antenna radiation pattern at the receiver. Using this approach, it is possible to achieve capacity gains in a multi-element reconfigurable antenna system without modifying the data frame of a conventional wireless communication system. The capacity gain achievable with this configuration selection approach is calculated through numerical simulations using reconfigurable circular patch antennas at the receiver of a MIMO system that employs minimum mean square error receivers for channel estimation. Channel capacity and Bit Error Rate (BER) results show the improvement offered relative to a conventional antenna selection technique for reconfigurable MIMO systems.
摘要:
An antenna system that allows increasing the reading reliability of RFId systems by dynamically changing the shape or the polarization of the electromagnetic field radiated by the RPId reader. The system includes at least one reconfigurable antenna, a variable DC bias unit and a methodology to efficiently use the system in RFId applications. The system allows changing the direction in which the energy is radiated or the polarization of the radiated field in order to “move” the electromagnetic field and to also read RFid tags that receive faint signals with standard RFid systems. Polarization alignment between the reader's antenna and the transponder allows for maximum power transfer, while changing the direction of radiation allows concentrating the electromagnetic field towards the transponder.
摘要:
An antenna system that allows increasing the reading reliability of RFId systems by dynamically changing the shape or the polarization of the electromagnetic field radiated by the RPId reader. The system includes at least one reconfigurable antenna, a variable DC bias unit and a methodology to efficiently use the system in RFId applications. The system allows changing the direction in which the energy is radiated or the polarization of the radiated field in order to “move” the electromagnetic field and to also read RFid tags that receive faint signals with standard RFid systems. Polarization alignment between the reader's antenna and the transponder allows for maximum power transfer, while changing the direction of radiation allows concentrating the electromagnetic field towards the transponder.
摘要:
Leaky wave antennas that can be reconfigured in pattern and/or polarization by exploiting the characteristic of metamaterial structures loaded with variable capacitor and inductors employ a Composite Right Left Handed (CRLH) unit cell with two independent DC biases used to actively change the group delay of the transmission line and the polarization of the radiated field while preserving good impedance matching. Different degrees of pattern and polarization reconfigurability are achieved by cascading multiple of these unit cells along a straight line, a circular line or a zigzag line while preserving high gain for all the antenna configurations and good impedance matching.
摘要:
A linear motor system includes an element with a threaded passage, a threaded shaft, and a driving system. The threaded shaft has an axis of rotation which extends through and is at least partially engaged with at least a portion of the threaded passage. The driving system comprises at least two members operatively connected to the element. Each of the two members comprises two or more piezoelectric layers and electrodes which are coupled to opposing surfaces of each of the piezoelectric layers. The members are configured to expand and contract in a direction along the axis of rotation. The driving system is configured to subject the element to vibrations causing the threaded shaft to simultaneously rotate and translate in the direction along the axis of rotation through the element and apply an axial force in the direction along the axis of rotation.
摘要:
A lens actuator module includes a lens assembly with an optical centerline and a clear aperture, a bearing guide integrated adjacent to the clear aperture with the centerline of motion substantially parallel to the optical centerline, a linear actuator with a preloaded frictional contact point that moves the lens along the centerline. The preload force is perpendicular to the optical centerline, constant and generated in-line with the contact point such that the preload force produces substantially zero additional friction in the bearing guide irrespective of the location along the optical centerline.
摘要:
A linear motor system includes an element with a threaded passage, a threaded shaft, and a driving system. The threaded shaft has an axis of rotation which extends through and is at least partially engaged with at least a portion of the threaded passage. The driving system comprises at least two members operatively connected to the element. Each of the two members comprises two or more piezoelectric layers and electrodes which are coupled to opposing surfaces of each of the piezoelectric layers. The members are configured to expand and contract in a direction along the axis of rotation. The driving system is configured to subject the element to vibrations causing the threaded shaft to simultaneously rotate and translate in the direction along the axis of rotation through the element and apply an axial force in the direction along the axis of rotation.