Quantitative Comparison of Sample Populations Using Earth Mover's Distance
    5.
    发明申请
    Quantitative Comparison of Sample Populations Using Earth Mover's Distance 审中-公开
    使用地球移动器距离的样本群体的定量比较

    公开(公告)号:US20120173199A1

    公开(公告)日:2012-07-05

    申请号:US13342722

    申请日:2012-01-03

    IPC分类号: G06F17/18

    摘要: A method and apparatus for quantitatively measuring differences between portions of a multivariate, multi-dimensional sample distribution, may comprise summarizing the data by dividing the data into clusters each having a signature representative of a position of the cluster and a fraction of the entire distribution within the cluster; matching a plurality of first supplier signatures to a respective one of a plurality of second receiver signatures using a cost factor indicative of the separation between first signature elements and second signature elements; and determining a measurement of the work required to transform the first signature to the second signature. The step of determining a measurement of the work may comprise applying the earth mover distance (“EMD”) algorithm between the first signature or elements of the first signature and the respective second signatures or elements of the respective second signature.

    摘要翻译: 一种用于定量测量多变量多维样本分布的部分之间的差异的方法和装置可以包括通过将数据划分成各自具有代表簇的位置的签名的代码和在整个分布内部的整个分布的一部分来总结数据 集群; 使用指示第一签名元素和第二签名元素之间的间隔的代价因子将多个第一供应商签名与多个第二接收者签名中的相应一个签名相匹配; 以及确定将所述第一签名转换为所述第二签名所需的工作的度量。 确定作业的测量的步骤可以包括在第一签名或第一签名的元素与相应的第二签名或相应的第二签名的元素之间应用土方搬运者距离(“EMD”)算法。

    Quantitative comparison of sample populations using earth mover's distance

    公开(公告)号:US10452746B2

    公开(公告)日:2019-10-22

    申请号:US13342722

    申请日:2012-01-03

    IPC分类号: G06F17/18

    摘要: A method and apparatus for quantitatively measuring differences between portions of a multivariate, multi-dimensional sample distribution, may comprise summarizing the data by dividing the data into clusters each having a signature representative of a position of the cluster and a fraction of the entire distribution within the cluster; matching a plurality of first supplier signatures to a respective one of a plurality of second receiver signatures using a cost factor indicative of the separation between first signature elements and second signature elements; and determining a measurement of the work required to transform the first signature to the second signature. The step of determining a measurement of the work may comprise applying the earth mover distance (“EMD”) algorithm between the first signature or elements of the first signature and the respective second signatures or elements of the respective second signature.

    Methods for analysis of large sets of multiparameter data
    7.
    发明授权
    Methods for analysis of large sets of multiparameter data 失效
    大量多参数数据分析方法

    公开(公告)号:US06178382B1

    公开(公告)日:2001-01-23

    申请号:US09103284

    申请日:1998-06-23

    IPC分类号: G01N3350

    CPC分类号: G06T11/206 G01N33/50

    摘要: This invention relates a series of methods for the visual representation and subsequent application of analyses on complex data sets. In particular, this invention is useful for the analysis of multiple sample sets that share common features, for which similar types of analyses are desired. Three concepts are embodied to aid in this analysis: “Functional equivalence by Algorithmic Polymorphism” (FEAP), in which an analysis algorithm is abstracted through the use of an associated name; a genealogical metaphor for the representation of successive or parallel analysis steps, in which “families” of analyses can be easily copied between different sample data sets; and batch analysis through the creation of multi-sample analysis surrogates (MSAS), which are groups of samples wherein analyses applied to an MSAS is then applied to every sample within the MSAS group. This invention has particular utility in the analysis of data derived from flow cytometers, the analysis of complex demographic data, and other similar data sets.

    摘要翻译: 本发明涉及用于在复杂数据集上的分析的视觉表示和后续应用的一系列方法。 特别地,本发明对于分析共享共同特征的多个样本集是有用的,对于类似的分析类型是期望的。 三个概念被体现为帮助分析:“通过算法多态性的功能等同”(FEAP),其中分析算法通过使用关联名称被抽象; 用于表示连续或平行分析步骤的系谱比喻,其中分析的“家庭”可以容易地在不同样本数据集之间复制; 并通过创建多样本分析代理(MSAS)进行批量分析,这些代码是MSAS组中每个样本的样本组,其中分析应用于MSAS。 本发明在分析流式细胞仪获得的数据,复杂人口统计学数据分析和其他类似数据集方面具有特别的实用价值。