摘要:
The present invention is directed compositions for delivery of RNA interference (RNAi) polynucleotides to cells in vivo. The compositions comprise amphipathic membrane active polyamines reversibly modified with enzyme cleavable dipeptide-amidobenzyl-carbonate masking agents. Modification masks membrane activity of the polymer while reversibility provides physiological responsiveness. The reversibly modified polyamines (dynamic polyconjugate or DPC) are further covalently linked to an RNAi polynucleotide or co-administered with a targeted RNAi polynucleotide-targeting molecule conjugate.
摘要:
The present invention is directed compositions for delivery of RNA interference (RNAi) polynucleotides to cells in vivo. The compositions comprise amphipathic membrane active polyamines reversibly modified with enzyme cleavable dipeptide-amidobenzyl-carbonate masking agents. Modification masks membrane activity of the polymer while reversibility provides physiological responsiveness. The reversibly modified polyamines (dynamic polyconjugate or DPC) are further covalently linked to an RNAi polynucleotide or co-administered with a targeted RNAi polynucleotide-targeting molecule conjugate.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted melittin delivery peptides. Delivery peptides provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery peptides.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted melittin delivery peptides. Delivery peptides provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery peptides.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to cell in vivo. The pharmacokinetic modulator improve in vivo targeting compared to the targeting ligand alone. Targeting ligand-pharmacokinetic modulator targeting moiety targeted RNAi polynucleotides can be administered in vivo alone or together with co-targeted delivery polymers.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to cell in vivo. The pharmacokinetic modulator improve in vivo targeting compared to the targeting ligand alone. Targeting ligand-pharmacokinetic modulator targeting moiety targeted RNAi polynucleotides can be administered in vivo alone or together with co-targeted delivery polymers.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted delivery polymers. Delivery polymers provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery polymers.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted delivery polymers. Delivery polymers provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery polymers.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted delivery polymers. Delivery polymers provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery polymers.
摘要:
We describe anhydride compounds suitable for physiologically labile modification of amine-containing molecules. The described anhydrides form reversible linkages having desirable kinetics for in vivo delivery of biologically active molecules. Also described are endosomolytic polymers formed by modification of membrane active polyamines with the described anhydrides.