摘要:
A process for producing a superconducting ceramic material using microwave energy and the superconducting ceramic material produced thereby. A preferred process comprises the steps of mixing powders of Y.sub.2 O.sub.3, CuO and at least one member selected from the group consisting of BaCO.sub.3 and BaO, and then subjecting the resultant powder mixture to heat treatment in microwave energy. In a preferred embodiment, the heat treatment step comprises the steps of calcining, sintering and annealing, at least one of the calcining and annealing steps using microwave energy.
摘要:
Nanomaterial compositions are useful for applications in drilling and completion fluids as enhancers of electrical and thermal conductivity, emulsion stabilizers, wellbore strength improvers, drag reduction agents, wettability changers, corrosion coating compositions and the like. These nanomaterials may be dispersed in the liquid phase in low volumetric fraction, particularly as compared to corresponding agents of larger size. Nanofluids (fluids containing nano-sized particles) may be used to drill at least part of the wellbore. Nanofluids for drilling and completion applications may be designed including nanoparticles such as carbon nanotubes. These fluids containing nanomaterials, such as carbon nanotubes, meet the required rheological and filtration properties for application in challenging HPHT drilling and completions operations.
摘要:
Nanoemulsions have been discovered to be useful to the oil field. More particularly water-in-oil (W/O), oil-in-water (O/W) and other classes of nanoemulsions have found beneficial application in drilling, completion, well remediation and other oil and gas industry related operations. Additionally, nanoemulsions may reduce friction pressure losses, as well as reduce subsidence of solid weight material during oil and gas operations. New preparation methods for nanoemulsions have also been discovered.
摘要:
One method for treating cuttings from a subsurface formation may include treating the cuttings with at least one surfactant and at least one stabilizing agent. The method may include contacting the cuttings with the stabilizing agent(s) before contacting the cuttings with the surfactant(s). Another method for treating drill cuttings includes returning the drill cuttings to a substantially water-wet condition by using at least one stabilizing agent to remove at least a portion of a hydrocarbon from the drill cuttings.
摘要:
Nanoemulsion, macroemulsions, miniemulsions, microemulsion systems with excess oil or water or both (Winsor I, II or III phase behavior) or single phase microemulsions (Winsor IV) improve the removal of filter cakes formed during hydrocarbon reservoir wellbore drilling with OBM. Such filter cakes and their particles can contact, impact and affect the movement of the drill string undesirably resulting in a “stuck pipe” condition. The macroemulsion, nanoemulsion, miniemulsion, microemulsion systems with excess oil or water or both or single phase microemulsion removes oil and solids from the filter cake, thereby releasing the drill string from its stuck condition. In one non-limiting embodiment, the emulsion system may be formed in situ (downhole) rather than produced or prepared in advance and pumped downhole.
摘要:
Single phase microemulsions improve the removal of filter cakes formed during drilling with oil-based muds (OBMs). The single phase microemulsion removes oil and solids from the deposited filter cake. Optionally, an acid capable of solubilizing the filter cake bridging particles may also be used with the microemulsion. In one non-limiting embodiment the acid may be a polyamino carboxylic acid. Skin damage removal from internal and external filter cake deposition can be reduced. In another optional embodiment, the single phase microemulsion may contain a filtration control additive for delaying the filter cake removal, destruction or conversion.
摘要:
Single phase microemulsions improve the removal of filter cakes formed during drilling with oil-based muds (OBMs). The single phase microemulsion removes oil and solids from the deposited filter cake. Optionally, an acid capable of solubilizing the filter cake bridging particles may also be used with the microemulsion. In one non-limiting embodiment the acid may be a polyamino carboxylic acid. Skin damage removal from internal and external filter cake deposition can be reduced. In another optional embodiment, the single phase microemulsion may contain a filtration control additive for delaying the filter cake removal, destruction or conversion.
摘要:
Compounds of formula (I): wherein: R2 is H or an optionally substituted C1-4 alkyl group; Y is either —(CH2)n—X—, where n is 1 or 2 and X is O, S, S(═O), S(═O)2, or NRN1, where RN1 is selected from H or optionally substituted C1-4 alkyl, or Y is —C(═O)NRN2—, where RN2 is selected from H, and optionally substituted C1-7 alkyl or C5-20 aryl; R3 is an optionally substituted C6 aryl group linked to a further optionally substituted C6 aryl group, wherein if both C6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings; A is a single bond or a C1-3 alkylene group; and R5 is either: (i) carboxy; (ii) a group of formula (II): (iii) a group of formula (III): wherein R is optionally substituted C1-7 alkyl, C5-20 aryl or NRN3RN4, where RN3 and RN4 are independently selected from optionally substituted C1-4 alkyl; (iv) tetrazol-5-yl.
摘要:
Nanoemulsion, macroemulsions, miniemulsions, microemulsion systems with excess oil or water or both (Winsor I, II or III phase behavior) or single phase microemulsions (Winsor IV) improve the removal of filter cakes formed during hydrocarbon reservoir wellbore drilling with OBM. Such filter cakes and their particles can contact, impact and affect the movement of the drill string undesirably resulting in a “stuck pipe” condition. The macroemulsion, nanoemulsion, miniemulsion, microemulsion systems with excess oil or water or both or single phase microemulsion removes oil and solids from the filter cake, thereby releasing the drill string from its stuck condition. In one non-limiting embodiment, the emulsion system may be formed in situ (downhole) rather than produced or prepared in advance and pumped downhole.