Abstract:
A system comprises a differential pressure sensor, a process pressure sensor, a temperature sensor and a microprocessor. The differential pressure sensor is positioned to sense differential pressure along a fluid flow, where fluid properties of the fluid flow have first and second phases separated along a transition curve. The process pressure sensor is positioned to sense a pressure of the fluid flow, and the temperature sensor is positioned to sense a temperature of the fluid flow. The microprocessor is coupled to the temperature sensor and the pressure sensor to determine a flow rate, and the microprocessor generates a diagnostic based on the process pressure and the temperature as compared to the transition curve.
Abstract:
Methods and systems for assessing transmitter electronics in an industrial process control system comprise generating a process condition reference equation signal, a process condition approximation equation signal, and an accuracy output signal. The process condition reference equation signal is generated using a process condition reference equation and process control inputs. The process condition approximation equation signal is generated using a process condition approximation equation that approximates the reference equation using the process control inputs, and approximation equation coefficients based on the approximation equation and the process control inputs. The approximation equation signal is compared to the reference equation signal at a control room workstation such that the industrial process control system can be adjusted. In one embodiment, the approximation equation coefficients are adjusted and transmitted to process transmitter electronics over a control network. In another embodiment, a parameter of the industrial process control system, such as a primary element or transmitter, is adjusted.
Abstract:
A system comprises a differential pressure sensor, a process pressure sensor, a temperature sensor and a microprocessor. The differential pressure sensor is positioned to sense differential pressure along a fluid flow, where fluid properties of the fluid flow have first and second phases separated along a transition curve. The process pressure sensor is positioned to sense a pressure of the fluid flow, and the temperature sensor is positioned to sense a temperature of the fluid flow. The microprocessor is coupled to the temperature sensor and the pressure sensor to determine a flow rate, and the microprocessor generates a diagnostic based on the process pressure and the temperature as compared to the transition curve.
Abstract:
A sensor probe comprises a tube, a sensor element and an absorber mass. The tube is for placement in a process fluid flow within a fluid conduit and comprises a first end for coupling to the fluid conduit and a second end for insertion into the process fluid flow. The sensor element is in communication with the tube. The absorber mass is coupled to the tube and is configured to dampen vibration of the tube when inserted in the process fluid flow.
Abstract:
Methods and systems for assessing transmitter electronics in an industrial process control system comprise generating a process condition reference equation signal, a process condition approximation equation signal, and an accuracy output signal. The process condition reference equation signal is generated using a process condition reference equation and process control inputs. The process condition approximation equation signal is generated using a process condition approximation equation that approximates the reference equation using the process control inputs, and approximation equation coefficients based on the approximation equation and the process control inputs. The approximation equation signal is compared to the reference equation signal at a control room workstation such that the industrial process control system can be adjusted. In one embodiment, the approximation equation coefficients are adjusted and transmitted to process transmitter electronics over a control network. In another embodiment, a parameter of the industrial process control system, such as a primary element or transmitter, is adjusted.
Abstract:
A device comprises a sensor tube for placement in a process flow and a flow-modifying element. The flow-modifying element is formed on the sensor tube, in order to reduce flow-induced vibrations by reducing coherent vortex shedding in the process flow.
Abstract:
A device comprises a sensor tube for placement in a process flow and a flow-modifying element. The flow-modifying element is formed on the sensor tube, in order to reduce flow-induced vibrations by reducing coherent vortex shedding in the process flow.
Abstract:
A sensor probe comprises a tube, a sensor element and an absorber mass. The tube is for placement in a process fluid flow within a fluid conduit and comprises a first end for coupling to the fluid conduit and a second end for insertion into the process fluid flow. The sensor element is in communication with the tube. The absorber mass is coupled to the tube and is configured to dampen vibration of the tube when inserted in the process fluid flow.
Abstract:
A system to configure a field device of the type used to calculate a flow of a process fluid. The system includes a flow repository comprising a list of process fluids with which the field device can be used, fluid equation data which provides information related to fluid equations for calculating fluid parameters of the process fluid, a list of primary elements, and primary element equation data which provides information related to primary element equations and fluid equations for calculating flow of the process fluid. The flow application is adapted to retrieve data from the flow repository and to generate information which is used by field device to calculate the flow of the process fluid.
Abstract:
A system to configure a field device of the type used to calculate a flow of a process fluid. The system includes a flow repository comprising a list of process fluids with which the field device can be used, fluid equation data which provides information related to fluid equations for calculating fluid parameters of the process fluid, a list of primary elements, and primary element equation data which provides information related to primary element equations and fluid equations for calculating flow of the process fluid. The flow application is adapted to retrieve data from the flow repository and to generate information which is used by field device to calculate the flow of the process fluid.