摘要:
In an active matrix display, each pixel has a storage capacitor for storing a voltage to be used for addressing a drive transistor. A discharge transistor is provided for discharging the storage capacitor thereby to switch off the drive transistor. The timing of this is controlled by a light-dependent device which is illuminated by the display element. The drive transistor is controlled to provide a constant light output from the display element, and the duration is controlled in dependence on the data voltage. Optical feedback is used to alter further the timing of operation of the discharge transistor to provide ageing compensation of the display element and compensation for changes in the drive transistor.
摘要:
A display device has a plurality of pixels, each pixel having a current-driven display element (2) coupled between a first conductive layer (28) and a second conductive layer (27), the second conductive layer (27) being coupled to a current supply (26) via a switchable device (12) having a thin film component (122) on a first area of a substrate (120). Each pixel further has a first capacitive device having a first capacitor plate (132) on a second area of the substrate (120), the first capacitor plate (120) being conductively coupled to the thin film component, a second capacitor plate (133) and a first insulating layer (130) between the first capacitor plate (132) and the second capacitor plate (133). Stacked on top of the first capacitive device is a second capacitive device sharing the second capacitor plate (133) with the first capacitive device, the second capacitive device further comprising a third capacitor plate comprising at least a part of the second conductive layer (27), and a second insulating layer (140) between the second capacitor plate and the third capacitor plate. This arrangement benefits from larger capacitances for the first capacitive device and the second capacitive device, making them more robust against the influences of parasitic capacitances.
摘要:
A display controller (40), comprising: a processor (62) for providing row selection pulses (52, 54, 56) for a display comprising M rows of pixels, the row selection pulses (52, 54, 56) having respective durations (t1, t2, t3 . . . tM) that increase from the pulse (52) for row 1 to the pulse (56) for row M. The processor (62) may retime image data (72) for synchronisation with the increase in the pulse duration, for example by writing incoming data (72) in to a buffer (64) at the rate the incoming data (72) is received and reading the data out from the buffer (64) at a rate corresponding to the increase in the pulse duration. Also described is a display device comprising the display controller (40), and a method of driving the display device using the display controller (40). The increase in row selection pulse duration (t1, t2, t3 . . . tM) is arranged to correspond, with a desired level of precision, to an increasing charging time of the pixels of the rows.
摘要:
In an active matrix display device, particularly an AMLCD, having an array of display pixels (8) and comprising pixel electrodes (16), associated switches (22), and address lines (18, 20) carried on a first substrate (10), a common electrode (26) carried on a second substrate (12), a drive circuit (40, 80) carried on the first substrate (10) including at least one conductor line (96) providing a drive voltage for the common electrode (26) and to which the common electrode (26) is connected (92), the common electrode (26) on the second substrate is utilised to provide also electrical connection between the one conductor line (96) and at least one other circuit element (37) carried on the first substrate (10). The use of the common electrode in this way assists in avoiding problems due to resistances of connections formed on the first substrate. The connection to a storage capacitor line (37, 36) may benefit especially. The common electrode (26) may be connected to the circuit elements on the first substrate via contact material (92, 100) extending across the gap between the two substrates.
摘要:
A portable electronic device (40) comprises a display module (42) and a battery unit (44). The device has at least one further analogue input or output interface (50,52,54) (in addition to the display). The display module includes a voltage converter (48) for providing at least one voltage exceeding the battery unit voltage, and an output from the voltage converter (48) of the display module is provided to a circuit (50a, 52a, 54a) associated with the at least one further analogue input or output interface. This enables a reduction in cost and volume of the device by providing a highly integrated solution, in which a voltage converter within a display module is used also for circuitry of another interface or interfaces.
摘要:
An active matrix display device uses an amorphous silicon drive transistor for driving a current through an LED display element. First and second capacitors are connected in series between the gate and source of the drive transistor, with a data input to the pixel provided to the junction between the first and second capacitors. The second capacitor is charged to a pixel data voltage, and a drive transistor threshold voltage is stored on the first capacitor. This pixel arrangement enables a threshold voltage to be stored on the first capacitor, and this can be done each time the pixel is addressed, thereby compensating for age-related changes in the threshold voltage.
摘要:
An active matrix LED display has a light-dependent device for detecting the brightness of the display element and threshold voltage measurement circuitry for measuring a threshold voltage of a pixel the drive transistor. Compensation for ageing of the display element is thus provided by an optical feedback path, and compensation for drive transistor threshold variations is provided by measurement of the threshold voltage. This provides a reliable compensation scheme for the threshold voltage variations, whilst also providing ageing compensation.
摘要:
An active miatrix electroluminescent display device has pixels using an amorphous silicon or microcrystalline silicon drive NMOS transistor (22) connected between the anode of the display element (2) and a power supply line (26). A storage capacitor (24) is connected between the anode of the display element and the gate the drive transistor (22). An amorphous silicon or microcrystalline silicon second drive NMOS transistor (30) supplies a holding voltage to the anode of the display element (2). This arrangement enables the voltage across the display element to be held while the transistor gate drive voltage is stored on the storage capacitor. This enables an accurate current source pixel circuit to he implemented using NMOS transistors.
摘要:
Physical barriers (210) are present between neighbouring pixels (200) on a circuit substrate (100) of an active-matrix display device, such as an electroluminescent display formed with LEDs (25) of organic semiconductor materials. The invention forms at least parts of the barriers (210) with metal or other electrically-conductive material (240) that is insulated (40) from the LEDs but connected to the circuitry (4, 5, 6, 9, 140, 150, 160, T1, T2, Tm, Tg, Ch etc.) within the substrate (100). This conductive barrier material (240) may back up or replace, for example, matrix addressing lines (150) and/or form an additional component either within the pixel array or outside. The additional component comprising the conductive barrier material (240) is advantageously a capacitor (Ch), or an inductor (L) or transformer (W), or even an aerial.
摘要:
Physical barriers (210) are present between neighbouring pixels (200) on a circuit substrate (100) of an active-matrix electroluminescent display device, particularly with LEDs (25) of organic semi conductor materials. The invention forms these barriers (210) with metal or other electrically-conductive material (240), that is insulated (40) from the LEDs but connected circuitry within the substrate (100). This conductive barrier material (240) backs-up or replaces at least a part of the drive supply line (140,240) to which the LEDs are connected by a drive element T1. This transfers the problem of line resistance and associated voltage drop from within the circuit substrate (100), where it is severely constrained, to the much freer environment of the pixel barriers (210) on the substrate (100) where the conductive barrier material (240) can provide much lower resistance. Very large displays can be made with low voltage drops along this composite drive supply line (140,240). Furthermore, the structure can be optimised to form a smoothing capacitor (Cs) between this drive supply line (240,240) with its conductive barrier material (240) and the further supply line (230) of the LED upper electrodes (23) extending on an insulating coating (40) over the top of the conductive barrier material (240).