SELF-REPAIRING ELECTRONIC DATA SYSTEM
    1.
    发明申请
    SELF-REPAIRING ELECTRONIC DATA SYSTEM 有权
    自我修复电子数据系统

    公开(公告)号:US20110004787A1

    公开(公告)日:2011-01-06

    申请号:US12865938

    申请日:2009-02-09

    IPC分类号: G06F11/20 G06N5/02

    摘要: An array of logic devices capable of self-determining the program, inputs and outputs from configuration information provided by its nearest neighbours. The rules used by each device to self-determine its behaviour are identical to those of every other device in the array. This facilitates the development of robust array configurations and robust behaviour of the device as a whole. This system's logic devices utilize three shift-registers, two are programmed before operation, the third is programmed on-the-fly by the other two. This facilitates a fast response to changes in the performance of the array in the event of partial dynamic or static failures of the array. An iterative design algorithm for the array ensures optimum use of the resources of the array.

    摘要翻译: 能够自行确定程序的逻辑设备阵列,由其最邻近的邻居提供的配置信息的输入和输出。 每个设备用于自行确定其行为的规则与阵列中每个其他设备的规则相同。 这有助于开发强大的阵列配置和整个设备的鲁棒性能。 该系统的逻辑器件使用三个移位寄存器,两个在操作之前编程,第三个是由另外两个寄存器编程的。 这有助于在阵列的部分动态或静态故障的情况下快速响应阵列性能的变化。 阵列的迭代设计算法确保了数组资源的最佳使用。

    Self-repairing electronic data system
    2.
    发明授权
    Self-repairing electronic data system 有权
    自修电子数据系统

    公开(公告)号:US08386844B2

    公开(公告)日:2013-02-26

    申请号:US12865938

    申请日:2009-02-09

    IPC分类号: G06F11/20 G06N5/02

    摘要: An array of logic devices capable of self-determining the program, inputs and outputs from configuration information provided by its nearest neighbors. The rules used by each device to self-determine its behavior are identical to those of every other device in the array. This facilitates the development of robust array configurations and robust behavior of the device as a whole. This system's logic devices utilize three shift-registers, two are programmed before operation, the third is programmed on-the-fly by the other two. This facilitates a fast response to changes in the performance of the array in the event of partial dynamic or static failures of the array. An iterative design algorithm for the array ensures optimum use of the resources of the array.

    摘要翻译: 能够自行确定程序的逻辑设备阵列,由其最邻近的邻居提供的配置信息的输入和输出。 每个设备用于自行确定其行为的规则与阵列中每个其他设备的规则相同。 这有助于开发强大的阵列配置和整个设备的鲁棒性能。 该系统的逻辑器件使用三个移位寄存器,两个在操作之前编程,第三个是由另外两个寄存器编程的。 这有助于在阵列的部分动态或静态故障的情况下快速响应阵列性能的变化。 阵列的迭代设计算法确保了数组资源的最佳使用。

    EXPOSURE APPARATUS AND METHODS
    4.
    发明申请
    EXPOSURE APPARATUS AND METHODS 有权
    曝光装置及方法

    公开(公告)号:US20110292363A1

    公开(公告)日:2011-12-01

    申请号:US13056023

    申请日:2009-07-30

    IPC分类号: G03B27/52

    摘要: A light beam collimated by illumination optics (4) from a radiation source (6) illuminates the surface of a wave front modulator (8) such as an Spatial Light Modulator (SLM) or Computer Generated Hologram photomask (CGH). The resulting wave travels via projection optics (10) to the substrate (12), passing through a projection lens assembly (14). The SLM (8) is programmed or CGH configured with a modulation pattern that is determined by the substrate (12) topography and desired pattern. The substrate topography is provided by Digital Holography (DH) surface profilometery performed by a DH microscope (18), which provides geometrical or topographical input to the CGH calculation routines (16). An arrangement for vertical or sloping surface patterning has a grating (22) superimposed onto the CGH pattern (24) to generate +1 and −1 orders. The SLM or CGH may be configured: using Fresnel patterns to provide an extended depth of field of the projected wave front; by encoding line segments of the desired pattern as cylindrical lines; by calculating inverse propagation between non-planar topography of the substrate and the SLM or CGH (using a Rayleigh-Sommerfield diffraction formula); and/or using iteration to determine a restricted encoding in the configuration of the SLM or CGH.

    摘要翻译: 来自辐射源(6)的由照明光学器件(4)准直的光束照射诸如空间光调制器(SLM)或计算机生成的全息照相掩模(CGH)的波前调制器(8)的表面。 所产生的波通过投影光学器件(10)传播到基底(12),穿过投影透镜组件(14)。 SLM(8)被编程或CGH配置有由衬底(12)形貌和期望图案确定的调制图案。 衬底形貌由数字全息(DH)表面轮廓提供,由DH显微镜(18)执行,其提供CGH计算程序(16)的几何或形貌输入。 用于垂直或倾斜表面图案化的布置具有叠加在CGH图案(24)上的光栅(22),以产生+1和-1个顺序。 可以配置SLM或CGH:使用菲涅尔图案提供投影波前的扩展景深; 通过将期望图案的线段编码为圆柱线; 通过计算衬底的非平面形貌与SLM或CGH之间的反向传播(使用Rayleigh-Sommerfield衍射公式); 和/或使用迭代来确定SLM或CGH的配置中的受限编码。