摘要:
An electrochromic mirror is disclosed for use in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, at least one solution-phase electrochromic material contained within the chamber, and a second electrode overlying the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of reflective material and a coating of electrically conductive material that is at least partially transmissive and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source that is at least partially transmissive. The electrically conductive coating may include a single transparent layer or a plurality of partially reflective and transmissive layers, or an electrically conductive dichroic coating. The light source may be an information display, such as a compass/temperature display as used in an inside rearview mirror, or may be a signal light as used in an outside rearview mirror.
摘要:
An electrochromic mirror is disclosed for use in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, at least one solution-phase electrochromic material contained within the chamber, and a second electrode overlying the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of highly reflective material and a coating of electrically conductive material that is at least partially transmissive and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source that is at least partially transmissive. The electrically conductive coating may include a single transparent layer or a plurality of partially reflective and transmissive layers, or an electrically conductive dichroic coating. The light source may be an information display, such as a compass/temperature display as used in an inside rearview mirror, or may be a signal light as used in an outside rearview mirror.
摘要:
An electrochromic variable reflectance mirror for a vehicle includes a front element having a rear surface with a first layer of electrically conductive material disposed thereon, and a rear element having a front surface with a second layer of electrically conductive material disposed thereon. An electrical conductor may be provided to electrically couple a portion of the first conductive layer with a portion of the second conductive layer. At least one of the first and second conductive layers may be separated into a first portion and a second portion that is electrically isolated from the first portion and is in electrical contact with an electrochromic material disposed between the elements. A seal is provided to sealably bond the elements together in a spaced-apart relationship. The seal may have at least one electrically conductive region.
摘要:
An electrochromic variable reflectance mirror for a vehicle includes a reflector/electrode on the third surface of the mirror. This reflector/electrode forms an integral electrode in contact with the electrochromic media, and may be a single layer of a highly reflective material or may comprise a series of coatings. When a series of coatings is used for the reflector/electrode, there should be a base coating which bonds to the glass surface and resists any adverse interaction, e.g., corrosive action, with the constituents comprising the electrochromic media, an optional intermediate layer (or layers) which bonds well to the base coating and resists any adverse interaction with the electrochromic media, and at least one highly reflective layer which directly contacts the electrochromic media and which is chosen primarily for its high reflectance, stable behavior as an electrode, resistance to adverse interaction with the materials of the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, the ability to adhere to the base or intermediate layer(s) (if present) and to the epoxy seal, and ease of cleaning. If a base layer is deposited it preferably covers the entire third surface; however, when this is done the highly reflective layer may optionally only coat the central portion of the third surface and not the perimeter edge portion. The third surface reflector/electrode provides of improved electrical interconnection techniques used to impart a voltage drive potential to a transparent conductor on the mirror's second surface.
摘要:
An electrochromic variable reflectance mirror for a vehicle includes a reflector/electrode on the third surface of the mirror. This reflector/electrode forms an integral electrode in contact with the electrochromic media, and may be a single layer of a highly reflective material or may comprise a series of coatings. When a series of coatings is used for the reflector/electrode, there should be a base coating which bonds to the glass surface and resists any adverse interaction, e.g., corrosive action, with the constituents comprising the electrochromic media, an optional intermediate layer (or layers) which bonds well to the base coating and resists any adverse interaction with the electrochromic media, and at least one highly reflective layer which directly contacts the electrochromic media and which is chosen primarily for its high reflectance, stable behavior as an electrode, resistance to adverse interaction with the materials of the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, the ability to adhere to the base or intermediate layer(s) (if present) and to the epoxy seal, and ease of cleaning. If a base layer is deposited it preferably covers the entire third surface; however, when this is done the highly reflective layer may optionally only coat the central portion of the third surface and not the perimeter edge portion. The third surface reflector/electrode provides of improved electrical interconnection techniques used to impart a voltage drive potential to a transparent conductor on the mirror's second surface.
摘要:
An improved electrochromic rearview mirror assembly for motor vehicles is disclosed that includes a signal light mounted behind the electrochromic mirror. The electrochromic mirror has a signal light area formed in its reflective coating by removing a portion of the reflective coating and aligning the signal light with this signal light area. The portion removed is laser ablated to leave lines devoid of reflective material separated by lines of the reflective material. The signal light area may be formed in the reflective coating of the electrochromic mirror regardless of whether the reflective coating is applied to the rear or front surface of the rear element of the electrochromic mirror. If the reflective coating is applied to the front surface of the rear element (i.e., the third surface), the reflective material used is also electrically conductive so as to function as one of the electrodes for the electrochromic mirror. In this case, the remaining lines of reflective material in the signal light area are in electrical contact with the remaining reflective and conductive layer on the third surface. The reflective layer forms an integral electrode in contact with the electrochromic media, and may be a single layer of a highly reflective material or may comprise a series of coatings where the outer coating is a highly reflecting material.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
According to one embodiment of the present invention, an electrochromic rearview mirror assembly for a vehicle includes an electrochromic mirror having a variable reflectivity, a glare sensor for sensing levels of light directed towards the front element from the rear of the vehicle, an ambient sensor for sensing levels of ambient light, a display positioned behind the partially transmissive, partially reflective portion of the reflector for displaying information therethrough.