摘要:
A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
摘要翻译:涂覆制品包括使用在AR涂层中具有压缩残余应力的中等和低折射率(折射率“n”)层的可回火抗反射(AR)涂层。 在某些示例性实施例中,涂层可以包括从玻璃基板向外的以下层:氮氧化硅(SiO x N y)介质折射率层/高折射率层/低折射率层。 在某些示例性实施方案中,根据高折射率层和基底的化学和光学性质,选择AR涂层的介质和低折射率层以产生净压缩残余应力,从而优化抗反射涂层的整体性能 当涂层制品回火和/或热处理时。
摘要:
Certain example embodiments of this invention relate to a method of activating an indium tin oxide (ITO) thin film deposited, directly or indirectly, on a substrate. The ITO thin film is baked in a low oxygen environment at a temperature of at least 450 degrees C. for at least 10 minutes so as to provide for (1) a post-baked resistivity of the ITO thin film that is below a resistivity of a corresponding air-baked ITO thin film, (2) a post-baked visible spectrum absorption and transmission of the ITO thin film that respectively are below and above the absorption and transmission of the corresponding air-baked ITO thin film, and (3) a post-baked infrared reflectivity of the ITO thin film that is above the reflectivity of the corresponding air-baked ITO thin film. The substrate with the activated ITO thin film may be used in a photovoltaic device, for example.
摘要:
A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
摘要翻译:涂覆制品包括使用在AR涂层中具有压缩残余应力的中等和低折射率(折射率“n”)层的可回火抗反射(AR)涂层。 在某些示例性实施例中,涂层可以包括从玻璃基板向外的以下层:氮氧化硅(SiO x N y)介质折射率层/高折射率层/低折射率层。 在某些示例性实施方案中,根据高折射率层和基底的化学和光学性质,选择AR涂层的介质和低折射率层以产生净压缩残余应力,从而优化抗反射涂层的整体性能 当涂层制品回火和/或热处理时。
摘要:
Certain example embodiments of this invention relate to a method of activating an indium tin oxide (ITO) thin film deposited, directly or indirectly, on a substrate. The ITO thin film is baked in a low oxygen environment at a temperature of at least 450 degrees C. for at least 10 minutes so as to provide for (1) a post-baked resistivity of the ITO thin film that is below a resistivity of a corresponding air-baked ITO thin film, (2) a post-baked visible spectrum absorption and transmission of the ITO thin film that respectively are below and above the absorption and transmission of the corresponding air-baked ITO thin film, and (3) a post-baked infrared reflectivity of the ITO thin film that is above the reflectivity of the corresponding air-baked ITO thin film. The substrate with the activated ITO thin film may be used in a photovoltaic device, for example.
摘要:
A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress.
摘要:
A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
摘要翻译:涂覆制品包括使用在AR涂层中具有压缩残余应力的中等和低折射率(折射率“n”)层的可回火抗反射(AR)涂层。 在某些示例性实施例中,涂层可以包括从玻璃基板向外的以下层:氮氧化硅(SiO x N y)介质折射率层/高折射率层/低折射率层。 在某些示例性实施方案中,根据高折射率层和基底的化学和光学性质,选择AR涂层的介质和低折射率层以产生净压缩残余应力,从而优化抗反射涂层的整体性能 当涂层制品回火和/或热处理时。
摘要:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxynitride layer is formed over the transparent substrate. The metal oxynitride layer includes a first metal and a second metal. A reflective layer is formed over the transparent substrate.
摘要:
In certain examples, heat treatable coated articles, e.g., suitable for concentrating solar power (CSP) and/or other applications, may be provided. For instance, the heat treatable coated article may be a secondary reflector panel, primary reflector, etc., where a reflective coating is disposed on a glass substrate. A portion of the reflective coating may be removed and a frit material is disposed over the reflective coating. An elevated temperature may be applied to the glass substrate, the coating, and the frit material where the frit is cured. The coated article may be left flat, or optionally cold- or hot-bent into a desired shape suitable for a desired application.
摘要:
Certain example embodiments relate to a layer of or including Ti1-xSixOy and/or a method of making the same. In certain example embodiments, the Ti1-xSixOy-based layer may be substoichiometric with respect to oxygen. In certain example embodiments of this invention, the layer may include Ti1-xSixOy where x is from about 0.05 to 0.95 (more preferably from about 0.1 to 0.9, and even more preferably from about 0.2 to 0.8, and possibly from about 0.5 to 0.8) and y is from about 0.2 to 2 (more preferably from about 1 to 2, and even more preferably from about 1.5 to 2, and possibly from about 1.9 to 2). The layer may have an index of refraction of from about 1.6 to 1.9. The layer may also be used with a transparent conductive oxide in a transparent conductive coating.
摘要翻译:某些示例实施例涉及或包括Ti1-xSixOy层和/或其制造方法。 在某些示例性实施方案中,Ti 1-x Si x O y基层可以相对于氧为亚化学计量。 在本发明的某些示例性实施方案中,该层可以包括Ti1-xSixOy,其中x为约0.05至0.95(更优选为约0.1至0.9,甚至更优选约0.2至0.8,并且可能为约0.5至0.8) y为约0.2至2(更优选约1至2,甚至更优选约1.5至2,可能为约1.9至2)。 该层可以具有约1.6至1.9的折射率。 该层还可以与透明导电涂层中的透明导电氧化物一起使用。
摘要:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxynitride layer is formed over the transparent substrate. The metal oxynitride layer includes a first metal and a second metal. A reflective layer is formed over the transparent substrate.