Abstract:
A rotary atomizing applicator includes a shaping air system having first orifices discharging air against the outer surface of the bell cup, with the air following the bell cup and being released from the bell cup at the forward edge of the bell cup. A terminal portion of the outer surface of the bell cup directs the flow of air to shape the pattern of coating released from the bell cup. A second pattern of air is directed from outwardly and behind the bell cup inwardly toward the forward edge of the bell cup.
Abstract:
A splash plate assembly is retained in a rotary bell cup by a barbed skirt that interfaces with an inner surface of the bell cup. The splash plate assembly includes a splash plate or deflector that is secured to the front side of an insert. The insert has barbed extensions that may form a skirt around an outer periphery thereof. The insert is snapped into the front bell opening of a bell cup, and the barbed extensions elastically deform and snap back outwardly to interface with a shoulder formed in the bell cup inner surface.
Abstract:
A method and apparatus for coating articles with a coating material comprise forming a charged body of coating material, atomizing coating material from the charged body to form charged atomized coating material particles, and repelling the charged coating material particles from an apparatus which forms the charged body of coating material and atomizes the coating material from the charged body to form charged atomized coating material particles. Repelling the charged coating material particles from the apparatus includes providing a repelling electrode, providing a power supply to supply electrical charge of the same polarity as the charged atomized coating material particles, positioning the repelling electrode adjacent a region where the charged atomized coating material particles are formed, and providing on the repelling electrode a feature which increases an electric field gradient adjacent the feature to enhance the repulsive force between the feature and the charged atomized coating material particles.
Abstract:
A rotary atomizer includes a motor for spinning an output shaft. At least a portion of the shaft is electrically relatively non-insulative. An atomizing device is mounted on the shaft for rotation therewith. A passageway extends the length of the shaft. A feed tube extends through the passageway for supplying a coating material to be atomized to the atomizing device. At least a portion of the feed tube in contact with the coating material to be atomized as the coating material to be atomized flows through the feed tube toward the atomizing device is electrically relatively non-insulative. The atomizer further includes a device for promoting electrical charging of the coating material to be atomized as the coating material to be atomized is in contact with the electrically relatively non-insulative at least a portion of the feed tube.
Abstract:
An electrically isolating pressure feed paint reservoir suitable for holding electrically conductive paint applied with an electrostatic spray gun. A paint container is located in an electrically insulated housing which is mounted on a dolly for portability. The housing also mounts a pneumatically operated paint pump for delivering pressurized paint to the spray gun. When a lid to the housing is removed the high voltage power source is turned off and any high voltage present in the housing is discharged through a resistor.
Abstract:
Various embodiments of the present disclosure provide a grounding apparatus for use with a spray device associated with a vehicle. The grounding apparatus is biased toward the ground so that a portion of the grounding apparatus makes contact with the ground even in uneven terrain. The grounding apparatus is configured to be mounted in a receiver portion of a trailer hitch. In addition, provided herein is a system for powering a spray device with a DC power source, such as an automotive battery. The system includes an oscillator coupled to a step up transformer.
Abstract:
A spray applicator system is provided with a reservoir manifold assembly having a separate reservoir for each different coating to be applied. Reservoirs are filled from a coating supply system and isolated electrically from the supply system when coating is dispensed from a reservoir to the applicator. Multiple sets of reservoirs can be used, so that an empty reservoir in one set can be filled while coating is dispensed from a reservoir in the other set. The set of reservoirs in which a reservoir is being filled is isolated electrically from the applicator, and of the set of reservoirs in which a reservoir is dispensing coating to the applicator is isolated electrically from the supply system.
Abstract:
A coating material dispensing apparatus comprising a bell cup and a motor for rotating the bell cup about an axis of rotation of the bell cup. The motor is housed in a housing. A conduit is provided for feeding coating material to the interior of the bell cup as the bell cup is rotated by the motor. The coating material flows to an edge of the bell cup and is atomized therefrom in accordance with known principles. The housing includes an annular slot formed around the bell cup edge. Compressed air is coupled to the annular slot to generate and direct a first air stream at an exterior of the bell cup. At least one additional opening is formed in the housing radially outwardly from the annular slot. Compressed air is also coupled to the at least one additional opening to generate and direct a second air stream to combine with the first air stream to provide an air band.
Abstract:
A rotary atomizer includes a motor for spinning an output shaft. At least a portion of the shaft is electrically relatively non-insulative. An atomizing device is mounted on the shaft for rotation therewith. A passageway extends the length of the shaft. A feed tube extends through the passageway for supplying a coating material to be atomized to the atomizing device. At least a portion of the feed tube in contact with the coating material to be atomized as the coating material to be atomized flows through the feed tube toward the atomizing device is electrically relatively non-insulative. The atomizer further includes a device for promoting electrical charging of the coating material to be atomized as the coating material to be atomized is in contact with the electrically relatively non-insulative at least a portion of the feed tube. The device for promoting electrical charging of the coating material includes an electrically relatively non-insulative first portion in sufficiently close proximity to the electrically relatively non-insulative at least a portion of the shaft to provide relatively low resistance electrical charge transfer between the first portion and the electrically relatively non-insulative at least a portion of the shaft. The device for promoting electrical charging of the coating material further includes an electrically relatively non-insulative second portion extending in sufficiently close proximity to the electrically relatively non-insulative at least a portion of the feed tube to provide relatively low resistance electrical charge transfer between the second portion and the electrically relatively non-insulative at least a portion of the feed tube. The first and second portions are electrically coupled to each other to permit current flow to the electrically relatively non-insulative at least a portion of the the shaft and the electrically relatively non-insulative at least a portion of the feed tube.
Abstract:
A spray applicator cleaning system and a method includes a valve and control means for discharging air and solvent in alternating bursts to shaping air nozzles, a coating supply conduit and a dedicated cleaning nozzle on the applicator.