摘要:
A method and composition for transforming a latent physiological biometric into a visible physiological biometric are provided, the method comprising: providing a latent biometric disposed on a surface of an article, wherein said biometric comprises at least one eccrine-derived compound; contacting said latent biometric with a developing solution, wherein said developing solution comprises at least one imaging reagent selected from ninhydrin and 1,8-diazafluoren-9-one and a carrier solvent comprising at least one C3-C4 hydrofluorocarbon; and reacting said imaging reagent with said eccrine-derived compound to produce a visible physiological biometric.
摘要:
A method and composition for transforming a latent physiological biometric into a visible physiological biometric are provided, the method comprising: providing a latent biometric disposed on a surface of an article, wherein said biometric comprises at least one eccrine-derived compound; contacting said latent biometric with a developing solution, wherein said developing solution comprises at least one imaging reagent selected from ninhydrin and 1,8-diazafluoren-9-one and a carrier solvent comprising at least one C3-C4 hydrofluorocarbon; and reacting said imaging reagent with said eccrine-derived compound to produce a visible physiological biometric.
摘要:
A method and composition for transforming a latent physiological biometric into a visible physiological biometric are provided, the method comprising: providing a latent biometric disposed on a surface of an article, wherein said biometric comprises at least one eccrine-derived compound; contacting said latent biometric with a developing solution, wherein said developing solution comprises at least one imaging reagent selected from ninhydrin and 1,8-diazafluoren-9-one and a carrier solvent comprising at least one C3-C4 hydrofluorocarbon; and reacting said imaging reagent with said eccrine-derived compound to produce a visible physiological biometric.
摘要:
A process for preparing 1-chloro-1,1,3,3,3-pentafluoropropane, CF3CH2CF2Cl, comprising contacting in a reaction zone in the substantial absence of oxygen, reactants comprising chlorine and 1,1,1,3,3-pentafluoropropane, CF3CH2CHF2 (also referred to as HFC-245fa), and subjecting the reactants to actinic radiation, such as UV light at about 2,000 to 4,000 Angstroms, wherein: (1) inert gas is present at a concentration equal to or less than about 5 wt. % of the total weight of reactants; (2) the molar ratio of chlorine to CF3CH2CHF2 is from about 0.2:1 to about 1.5:1; and (3) the concentration of chlorinated product produced having greater than one chlorine present in the molecule is less than or equal to about 10 wt. %.
摘要:
A process for producing a fluoroolefin of the formula: CF3CY═CXnHp wherein Y is a hydrogen atom or a halogen atom (i.e., fluorine, chlorine, bromine or iodine); X is a hydrogen atom or a halogen atom (i.e., fluorine, chlorine, bromine or iodine); n and p are integers independently equal to 0, 1 or 2, provided that (n+p)=2; comprising contacting, in the presence of a phase transfer catalyst, a compound of the formula: CF3C(R1aR2b)C(R3cR4d), wherein R1, R2, R3, and R4 are independently a hydrogen atom or a halogen selected from the group consisting of fluorine, chlorine, bromine and iodine, provided that at least one of R1, R2, R3, and R4 is halogen and there is at least one hydrogen and one halogen on adjacent carbon atoms; a and b are independently=0, 1 or 2 and (a+b)=2; and c and d are independently=0, 1, 2 or 3 and (c+d)=3; and at least one alkali metal hydroxide. The alkali metal hydroxide can be, for example, potassium or sodium hydroxide and the phase transfer catalyst can be, for example, at least one: crown ether such as 18-crown-6 and 15-crown-5; or onium salt such as, quaternary phosphonium salt and quaternary ammonium salt. The olef in is useful, for example, as an intermediate for producing other industrial chemicals and as a monomer for producing oligomers and polymers.
摘要:
The invention provides a process for the preparation of 1,1,2,3,3,4-hexafluorobutane by telomerization of chlorotrifluoroethylene to produce 1,1,3,4-tetrachlorohexafluorobutane followed by reduction of that compound to 1,1,2,3,3,4-hexafluorobutane.
摘要:
Disclosed are heat transfer fluids which possess a highly desirable and unexpectedly superior combination of properties, and heat transfer systems and methods based on these fluids. The heat transfer fluid comprise from about 30 to about 70 percent, on a molar basis, of carbon dioxide (CO2) and from about 30 to about 70 percent, on a molar basis, of hydrofluorocarbon (HFC), preferably HFC having one to two carbon atoms, and even more preferably trans-1,1,1,3-tetrafluoropropene (HFC-32). The preferred fluids of the present invention have a vapor pressure of at least about 100 psia at 40?F and are also preferably not azeotropic.
摘要:
An azeotropic or azeotrope-like composition comprising a mixture of methyl iodide, 1-chloro-3,3,3,-trifluoropropene, and optionally one or more of fluorocarbons and/or hydrofluorocarbons. The compositions are present as a gas, at temperatures of about 30° C. or below. The inventive compositions serve as a non-ozone-depleting gaseous fumigant which is useful in a variety of applications, in place of methyl bromide. These compositions serve as a drop-in replacement for gaseous methyl bromide, providing the benefits of a methyl iodide fumigant while also utilizing existing methyl bromide equipment.
摘要:
The invention provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. More particularly, the invention relates to closed-celled, polyurethane and polyisocyanurate foams and methods for their preparation. The foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a non-amine catalyst used alone or in combination with an amine catalyst.
摘要:
Azeotropic and azeotrope-like compositions of methyl iodide and at least one fluorocarbon or hydrofluorocarbon such as 1,1,1,3,3-pentafluoropropane (HFC-245fa). The compositions are present as a gas, at temperatures of about 30° C. or below. The inventive compositions serve as a non-ozone-depleting gaseous fumigant which is useful in a variety of applications, in place of methyl bromide. These compositions serve as a drop-in replacement for gaseous methyl bromide, providing the benefits of a methyl iodide fumigant while also utilizing existing methyl bromide equipment.