Abstract:
A method and apparatus for the transmission of short data bursts in CDMA/HDR networks. Dormant access terminals are assigned to a common traffic channel and rate group by an access point. The access point then informs the access terminals of the assigned common traffic channels and rate groups. The access point then transmits short data bursts to the dormant access terminals using the assigned common traffic channels and rate groups. If an access terminal fails to acknowledge receipt of a short data burst, then the access terminal is re-assigned to a new common traffic channel and rate group and transmission of the short data bursts is re-attempted. If an access terminal fails to acknowledge receipt of a short data burst more than a predetermined number of times, then the access terminal is placed in an active mode of operation. The transmission of short data bursts may be further assigned to time slots within the common traffic channels and rate groups in order to conserve the resources of the access terminals.
Abstract:
A method and apparatus for load balancing in CDMA/HDR networks. An access terminal is operably coupled to a plurality of access points. The access terminal monitors the quality of the forward communication links between the access terminal and the access points. The access terminal also monitors the capacity utilization of the access points. The access terminal then requests data to be transmitted to the access terminal from a selected access point as a function of the monitored quality of the forward communication links and the capacity utilizations.
Abstract:
A method and apparatus for scheduling forward data link transmissions in CDMA/HDR networks. An access point that services a plurality of access terminals using corresponding forward communication links calculates a scheduling parameter for each of the corresponding forward communications links and access terminals as a function of a plurality of operating parameters.
Abstract:
To perform wireless communications in a wireless network, at least two spatial beams are formed within a cell segment, where the at least two spatial beams are associated with different power levels. The at least two spatial beams are swept across the cell segment according to a sweep pattern. In some implementations, multiple antenna assemblies can be used, where each antenna assembly has plural antenna elements. A lower one of the antenna assemblies can be used to form high and lower power beams, and an upper one of the antenna assemblies can be used to communicate backhaul information, for example.
Abstract:
An access network controller and a base station controller are formed to define an interface there between that enables the two systems to facilitate and respond to a voice call that is to be set up to a hybrid mobile station even though the hybrid mobile station is presently engaged in a data only call. More specifically, the base station is formed to generate a pseudo-page signal to the access network controller to determine whether the hybrid mobile station is present and available prior to the base station generating paging signals to establish the voice call. According to the response received from the access network controller, the base station either pages the hybrid mobile station to establish the voice call, forwards the call to voice mail, or forwards the call either to an Internet Call Delivery Server or to an Internet Call-Waiting Server.
Abstract:
A method and system applicable within a mobile transmission system for adaptively allocating a downlink data rate to an access terminal to compensate for channel fading. In accordance with the method of the present invention a downlink data rate selected in accordance with a determined signal-to-noise level, wherein the downlink data rate is associated with a specified signal-to-noise threshold to achieve a specified packet error rate. Next, a packet is transmitted to an access terminal at the selected downlink data rate. In response to successfully decoding the packet at the access terminal, the signal-to-noise threshold specified for the selected downlink data rate is decreased such that subsequent data rate selections are adaptively maximized. Responsive to a packet decoding error, the signal-to-noise threshold is abruptly increased to maintain the specified packet error rate.
Abstract:
A system determines an optimal set of base transceiver sets that are to transmit data over supplemental channels to a mobile station. A mobile station transmits periodic signal strength measurement message to rank the pilot signal strengths being received from the plurality of base station transceiver systems. Whenever the number of fundamental channel sectors that are active exceeds the maximum number of active supplemental channel sectors, periodic pilot strength measurement messages are transmitted by the mobile station. To improve resource usage, periodic pilot strength measurement messages are not transmitted as often as required to insure that the active supplemental channel sectors are the ones from which the strongest signals are received by the mobile station. Rather, a combination of periodic pilot strength measurement messages and calculated reverse link signal strength over spectral noise density values are used.
Abstract:
A method for operating a base station to service data communications in a cell/sector of a digital cellular wireless system. Data user forward link transmit power within the cell/sector is allocated. A data user Fundamental Channel (FCH) forward link transmit power reserve level upper limit (fd,max) and a data user FCH forward link transmit power reserve lower limit (fd,min) are set. A data user FCH forward link transmit power reserve level (fd) is initialized. The base station is operated to allocate FCHs to data users within the cell/sector, deallocate FCHs to data users within the cell/sector, allocate SCHs to data users within the cell/sector, and to deallocate SCHs to data users within the cell/sector. The SCHs are allocated so that the data user FCH forward link transmit power reserve level is maintained. Based upon at least one current data user operating condition in the cell/sector fd is adjusted. Operation prevents fd from violating fd,max or fd,min.
Abstract:
The present invention supports a scheduling protocol on a wireless communication network to transmit data packets stored in a queue from a user. Two performance metrics are generated and summed to provide a priority. The performance metrics are based on the delay for the data packets stored in the queue and the rate that the data packets can be transmitted on the network. The user with the higher calculated priority for the current time slot has its data packets transmitted.
Abstract:
A mobile communications system includes base stations and mobile units. A power control scheme is provided in which a mobile unit can enter into a discontinuous transmission (DTX) mode. During DTX mode, the mobile unit is not transmitting traffic channels that can be monitored to determine frame errors so that the target ratio of energy per bit to noise spectral density (target Eb/No) can be adjusted. Instead, the base station monitors bit errors of bits in a pilot channel communicated by the mobile unit during DTX mode. Using this technique, the target Eb/No can be adjusted even when the mobile unit is not transmitting traffic channels, so that outer-loop power control can be performed. A number of mechanisms can also be used to detect when a mobile unit has entered DTX mode.