摘要:
A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
摘要:
Systems for producing electrical energy from heat are disclosed. The system may include a carbon-nanotube based pathway along which heat from a source can be directed. An array of thermoelectric elements for generating electrical energy may be situated about a surface of the pathway to enhance the generation of electrical energy. A carbon nanotube-based, heat-dissipating member may be in thermal communication with the array of thermoelectric elements and operative to create a heat differential between the thermoelectric elements and the pathway by dissipating heat from the thermoelectric elements. The heat differential may allow the thermoelectric elements to generate the electrical energy. Methods for producing electrical energy are also disclosed.
摘要:
A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
摘要:
The present invention relates generally to novel, selectable hybrid polypeptides useful as agents for the treatment and prevention of metabolic diseases and disorders which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, such as diabetes and diabetes-related conditions. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.
摘要:
A method for fabricating or prototyping a nanoscale object is disclosed. The method includes defining a sequence of nanolayers that represent the nanoscale object, constructing a current nanolayer on a first surface, and depositing a sacrificial layer to cover the first surface but not the nanolayer. The nanolayer represents a slice of the nanoscale object. The nanolayer and the sacrificial layer provide a second surface on which a next nanolayer is constructed. The above construction and deposition steps are repeated if the next nanolayer is not the last nanolayer. The method also includes removing the sacrificial layers to produce the nanoscale object.
摘要:
The present invention relates generally to novel, selectable hybrid polypeptides useful as agents for the treatment and prevention of metabolic diseases and disorders which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, such as diabetes and diabetes-related conditions. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.