Abstract:
The present invention has been developed to improve the way a payload support platform, such as a mole, is driven between one site and another, particularly when the second site is the interior of a Lift which interfaces with a Pallet Handling System (PHS) of a ship. In a first aspect the invention proposes that the driving means which drives the payload support platform along a rail (10) is also used to move that rail (10) relative to the payload support platform and a support rail (22) so that the position of the rail can be changed during the movement of the payload support platform between one site and another. The payload support platform is lockable to the support rail (22), such that the force which drives the payload support platform along the rail (10) changes to driving the rail (10) relative to the support rail (22). In a second independent aspect of the invention the movable rail (10) is mounted in the gap between ends of fixed rails (62, 82) and is movable along a support rail (22) on which it is mounted between a position in which one end of the movable rail (10) is adjacent an end of one of the fixed rails (62, 82) to another position in which the other end of the movable rail (10) is adjacent the end of the other fixed rail (62,82).
Abstract:
The present invention has been developed to improve the way a payload support platform, such as a mole, is driven between one site and another, particularly when the second site is the interior of a Lift which interfaces with a Pallet Handling System (PHS) of a ship. In a first aspect the invention proposes that the driving means which drives the payload support platform along a rail (10) is also used to move that rail (10) relative to the payload support platform and a support rail (22) so that the position of the rail can be changed during the movement of the payload support platform between one site and another. The payload support platform is lockable to the support rail (22), such that the force which drives the payload support platform along the rail (10) changes to driving the rail (10) relative to the support rail (22). In a second independent aspect of the invention the movable rail (10) is mounted in the gap between ends of fixed rails (62, 82) and is movable along a support rail (22) on which it is mounted between a position in which one end of the movable rail (10) is adjacent an end of one of the fixed rails (62, 82) to another position in which the other end of the movable rail (10) is adjacent the end of the other fixed rail (62,82).
Abstract:
The human Occludin protein is identified as an essential Hepatitis C Virus (HCV) cell entry factor. Occludin is shown to render murine and other non-human cells infectable with HCV and to be required for HCV-susceptibility of human cells. Associated methods for inhibiting HCV infection, transgenic animal models for HCV pathogenesis, methods of identifying compounds or agents that prevent or mitigate interaction of HCV with Occludin, and HCV inhibitory agents are also disclosed. Kits and cell culture compositions useful for identifying compounds or agents that prevent or mitigate interaction of HCV with Occludin are also provided.
Abstract:
The human Occludin protein is identified as an essential Hepatitis C Virus (HCV) cell entry factor. Occludin is shown to render murine and other non-human cells infectable with HCV and to be required for HCV—susceptibility of human cells. Associated methods for inhibiting HCV infection, transgenic animal models for HCV pathogenesis, methods of identifying compounds or agents that prevent or mitigate interaction of HCV with Occludin, and HCV inhibitory agents are also disclosed. Kits and cell culture compositions useful for identifying compounds or agents that prevent or mitigate interaction of HCV with Occludin are also provided.
Abstract:
The invention proposes a deactivating element (1) for a valve train of an internal combustion engine. The deactivating element (1) comprises a housing (2) and an inner element (4) that is axially displaceable in the bore (3) of the housing (2). According to the invention, the pistons (7) arranged in the inner element (4) for coupling into an annular groove (12) in the housing (2) possess two flattened regions (10, 15) arranged diametrically opposite each other in axial direction of the deactivating element (1). The height of the annular groove (12) is reduced by a measure of a height of the second, additional flattened region (15). Due to the reduction of height of the annular groove (12), its volume is also reduced. This results in advantages activation and deactivation times.
Abstract:
The invention proposes a deactivating element (1) for a valve train of an internal combustion engine. The deactivating element (1) comprises a housing (2) and an inner element (4) that is axially displaceable in the bore (3) of the housing (2). According to the invention, the pistons (7) arranged in the inner element (4) for coupling into an annular groove (12) in the housing (2) possess two flattened regions (10, 15) arranged diametrically opposite each other in axial direction of the deactivating element (1). The height of the annular groove (12) is reduced by a measure of a height of the second, additional flattened region (15). Due to the reduction of height of the annular groove (12), its volume is also reduced. This results in advantages activation and deactivation times.
Abstract:
A switchable valve-drive component (1) for variable transmission of a stroke generated by one or more cam projections to a gas-exchange valve of an internal combustion engine is provided. The valve-drive component (1) has transmission elements (3, 4), which can be connected with a positive fit by coupling elements (8) in the transmission direction, in which force transmission surface sections (16) of the coupling elements (8) can be clamped between force transmission surface sections (20) of the transmission elements (3, 4). Here, at least one of the force transmission surface sections (16, 20) should be provided with a wear protection layer (23). This layer comprises at least one metal-free amorphous hydrocarbon layer with sp2-hybridized and sp3-hybridized carbon.
Abstract:
A power-generating device is disclosed that includes a pyroelectric material having first and second surfaces on opposite sides of the pyroelectric material. The device also includes a first conductive electrode coupled to a first support element that is configured to intermittently bring the first electrode into proximity with the first surface and a second conductive electrode proximate to the second surface at least while the first electrode is proximate to the first surface. The device also includes a power module that is electrically coupled between the first and second electrodes. The power module is configured to capture power from an electrical current flowing between the first and second electrodes.
Abstract:
During program code conversion, such as in a dynamic binary translator, automatic code generation provides target code 21 executable by a target processor 13. Multiple instruction ports 610 disperse a group of instructions to functional units 620 of the processor 13. Disclosed is a mechanism of preparing an instruction group 606 using a plurality of pools 700 having a hierarchical structure 711-715. Each pool represents a different overlapping subset of the issue ports 610. Placing an instruction 600 into a particular pool 700 also reduces vacancies in any one or more subsidiary pools in the hierarchy. In a preferred embodiment, a counter value 702 is associated with each pool 700 to track vacancies. A valid instruction group 606 is formed by picking the placed instructions 600 from the pools 700. The instruction groups are generated accurately and automatically. Decoding errors and stalls are minimized or completely avoided.