Abstract:
Systems and methods are disclosed herein that can allow for wirelessly powering and/or communicating with a sterile-packed electronic device without removing the electronic device from its sterile packaging and while maintaining the sterility of the electronic device. In some embodiments, a base station with a power transmitter wirelessly transfers power to a power receiver of the electronic device, for example using inductive, capacitive, or ultrasonic coupling. The base station or another external device can also be used to wirelessly program or interrogate the electronic device. Battery charging circuits and switching circuits for use with said systems and methods are also disclosed.
Abstract:
Systems and methods are disclosed herein that can allow for wirelessly powering and/or communicating with a sterile-packed electronic device without removing the electronic device from its sterile packaging and while maintaining the sterility of the electronic device. In some embodiments, a base station with a power transmitter wirelessly transfers power to a power receiver of the electronic device, for example using inductive, capacitive, or ultrasonic coupling. The base station or another external device can also be used to wirelessly program or interrogate the electronic device. Battery charging circuits and switching circuits for use with said systems and methods are also disclosed.
Abstract:
In one embodiment, an anatomical implant template has a template body having opposed first and second terminal ends. The template body bends so as to change the body from a first configuration, whereby the body extends from the first terminal end to the second terminal end along a first path, to a second configuration, whereby the body extends from the first terminal end to the second terminal end along a second path, different from the first path, the second path conforming more closely to the curvature of the at least one anatomical body. The body supports at least one device that outputs at least one signal from which a shape of the body in the second configuration can be ascertained. The anatomical implant template can further communicate the at least one signal to a computing device that generates signals for bending an anatomical implant.
Abstract:
Systems and methods are disclosed herein that can allow for wirelessly powering and/or communicating with a sterile-packed electronic device without removing the electronic device from its sterile packaging and while maintaining the sterility of the electronic device. In some embodiments, a base station with a power transmitter wirelessly transfers power to a power receiver of the electronic device, for example using inductive, capacitive, or ultrasonic coupling. The base station or another external device can also be used to wirelessly program or interrogate the electronic device. Battery charging circuits and switching circuits for use with said systems and methods are also disclosed.
Abstract:
In one embodiment, an anatomical implant template has a template body having opposed first and second terminal ends. The template body bends so as to change the body from a first configuration, whereby the body extends from the first terminal end to the second terminal end along a first path, to a second configuration, whereby the body extends from the first terminal end to the second terminal end along a second path, different from the first path, the second path conforming more closely to the curvature of the at least one anatomical body. The body supports at least one device that outputs at least one signal from which a shape of the body in the second configuration can be ascertained. The anatomical implant template can further communicate the at least one signal to a computing device that generates signals for bending an anatomical implant.
Abstract:
Devices, systems, and methods are provided for applying a controlled amount of torque during a surgical procedure. In one exemplary embodiment, after the amount of torque applied reaches a threshold amount, a modular driver tip can be deformed, for instance by breaking into pieces. A containment shield disposed around at least a portion of the tip is configured to receive at least a portion of the tip after it is deformed. In one aspect, multiple modular driver tips can be disposed in a cartridge, with a distal-most tip being held by a driver tip holder that has a holding force that is greater than a threshold torque value of the tip. Exemplary methods for operating surgical drivers and systems that include tips that deform at a threshold torque value, and a multitude of embodiments of tools and systems, are also provided.
Abstract:
A surgical tool is disclosed. The surgical tool includes a functional tool, a functional tip, at least one sensor, and a control unit. The functional tool has a shaft and a distal end. The functional tip is positioned at the distal end of the housing; at least one sensor is configured to generate a first signal indicative of at least one of an acoustic signal or a vibration signal generated by the functional tool. The control unit receives the first signal, analyzes the first signal to determine tissue type in contact with the functional tip and supplies a second signal to the functional tool to control at least one operation of the functional tool based upon the tissue type in contact with the functional tip.
Abstract:
An apparatus for inserting implants in a bone comprising a frame having a cartridge receiving chamber and a barrel. A cartridge defining a plurality of chambers is positioned in the cartridge receiving chamber so the chambers are selectively alignable with a longitudinal passage of the barrel. At least one instrument is positioned in one of the chambers, and a plurality of implants is positioned in the other chambers. A drive assembly is engageable with the instrument and the implants. The drive assembly is slidably and rotatably disposed in the frame and is moveable between a retracted position, an engaging position wherein the distal end of the drive assembly is positioned to engage the selected one of the instrument and the implants, and an extended position wherein the drive assembly extends through the chamber to transport the selected one of the instrument or the implant from the chamber to the distal end of the barrel.
Abstract:
Devices and methods for tissue removal are disclosed herein, including those in which a powered rotary tool actuates a cutting blade to sever tissue and drives an auger to transport the severed tissue proximally through the device. The severed tissue can be collected in an on-board collection chamber for subsequent use as graft material or otherwise (e.g., assay, analysis, post-processing, etc.). Devices of the type disclosed herein can reduce or eliminate the need to move the device in and out of the surgical site, reduce user input force, and provide improved ergonomics and increased user focus.
Abstract:
A method and apparatus are disclosed. The method includes removably attaching an input device of a surgical feedback system to a surgical tool having a handle. The input device has at least one sensor configured to collect a plurality of original signals. The plurality of original signals has at least one of an acoustic signal or a vibration signal. The surgical tool contacts tissue of a patient. And, a notification of the type of tissue being contacted by the surgical tool is received.