摘要:
A heat sink removes heat from an electronic device and comprises a base, a lid. An inner ring of first fins extend radially outwardly first length from an inner circle and extend axially a first height from the top surface of the base, and an outer ring of second fins extend radially inwardly a second length from an outer periphery and extend axially a second height from the top surface of the base. A confining plate extends radially above the fins and is spaced below the bottom surface of the lid whereby coolant fluid flows from an inlet opening of the lid through the center opening of the confining plate and radially outwardly through the fins and upward around the outer edge of the confining plate and into the space above the confining plate to an outlet opening. A nozzle having a throat is disposed above the lid and extends below the lid to the confining plate. A flow diverter extends upwardly from the top surface of the base and into and through the throat of the nozzle.
摘要:
A thermosiphon cooling assembly cools an electronic device with a conical condensing tube disposed about a curved central axis curving upwardly from a top of the evaporating unit to an upper distal end and a shroud disposed outward of an exterior surface of the condensing tube at the upper distal end extending axially along the central axis from the upper distal end to a lower edge spaced from the top defining an air opening. An air moving device moves air about the central axis within the shroud to the air opening. A plurality of condensing fins are disposed in the condensing tube and each condensing fin forms a pair of corners with an interior surface of the condensing tube and a wick material is disposed in each of the corners to return condensed vapor to the evaporating unit.
摘要:
A fluid heat exchanger assembly cools an electronic device with a cooling fluid supplied from a heat extractor (R, F) to an upper portion of a housing. A refrigerant is disposed in a lower portion of the housing for liquid-to-vapor transformation. A partition divides the upper portion of the housing from the lower portion and flow interrupters are disposed in the upper portion for interrupting thermal boundary layer to enhance thermal heat transfer to the flow of liquid coolant through the coolant passage of the upper portion in response to heat transferred by an electronic device to the lower portion of the housing.
摘要:
A heat dissipation element for cooling an electronic device is disclosed. The heat dissipation element has a top surface and a bottom surface for mounting the electronic device to be cooled thereto. The top surface defines a heat dissipation area for dissipating heat from the electronic device and a plurality of heat transfer fins project upwardly from the top surface and are coextensive with the heat dissipation area. Each of the heat transfer fins defines a plurality of steps having a rise and a run and each of the steps extend across the heat dissipation area for maximizing an amount of heat dissipated from the electronic device. The heat dissipation element is particularly useful in either one of a cold plate assembly used with a liquid cooled unit (LCU) or a boiler plate assembly used with a thermosiphon cooling unit (TCU).
摘要:
A cooling assembly having a base plate and a condenser plate. An outer wall interconnects the base plate to the condenser plate to define a sealed chamber with a working fluid being disposed within the sealed chamber. Intersecting partition walls are mounted to the condenser plate and are angled downwardly toward the base plate for directing working fluid on the condenser plate down a corner of the walls toward a portion of the base plate. Preferably, the base plate defines a first circumference and the condenser plate defines a second circumference larger than the first circumference such that the outer wall has an angled configuration extending between the base plate and the condenser plate to provide a larger area within the sealed chamber for a vapor phase of the working fluid than a liquid phase of the working fluid.
摘要:
A thermosiphon cooling assembly for dissipating heat generated by an electronic device includes a housing having a housing top, housing bottom and opposing sides. The opposing sides extend between the housing top and the housing bottom to define a low profile entrance and a low profile exit. A refrigerant is disposed within one or more boiling chambers. Heat generated by the electronic device is transferred to the refrigerant by the boiling chambers for liquid-to-vapor transformation. Condenser tubes having a bottom end and a top end extend from the boiling chambers at a diagonally upward angle across the sides between the housing bottom and housing top. The condenser tubes receive and condense vapor boiled off from the refrigerant. Air moving devices axially move air through the housing. Air is flowed across the condenser tubes to facilitate condensation.
摘要:
A thermosiphon cooling assembly cools an electronic device with a first refrigerant disposed in the lower boiling chamber of a housing for liquid-to-vapor transformation and a second refrigerant disposed in an upper evaporating chamber of a housing for liquid-to-vapor transformation. The partition separating the lower boiling chamber of the housing from the upper evaporating chamber of the housing creates a series of vapor chambers within the lower boiling portion for condensing vapor boiled off the first refrigerant. The upper evaporating chamber contains a series of refrigerant pockets interleaved vertically with the vapor chambers to increase the surface area for heat transfer between the refrigerant vapor and the second refrigerant for absorbing heat by the second refrigerant for liquid-to-vapor transformation.
摘要:
An automotive air conditioning system is disclosed comprising an evaporative cooler in series with the conventional vapor compression system. The evaporative cooler comprises an array of dry channels and a contiguous array of wet channels. The primary air stream to be conditioned by the evaporator of the conventional air conditioning system is preconditioned by the evaporative cooler by lowering its dry bulb temperature without changing its absolute humidity. An evaporator core is supported downstream of the evaporative cooler for receiving the primary air from the dry channels and thereby produces liquid condensate. The system is distinguished by conducting the liquid condensate from the evaporator core to the wicking tank for use in the wet channels of the evaporative cooler.
摘要:
A fluid heat exchanger assembly having an upper wall and a lower wall extending between the inlet and the outlet for establishing a direction of flow to cool an electronic device. A plurality of projections extend linearly transversely across the direction of flow to define rows of projections with linear cavities between adjacent projections so that fluid flows into and out of the cavities as the fluid flows across the rows of projections for contraction and expansion of the coolant flow to maximize heat transfer. The projections may be rectangular, triangular or convex, as viewed in cross section.
摘要:
A thermosiphon cooling assembly includes a refrigerant disposed in a lower portion of a housing for undergoing a liquid-to-vapor-to-condensate cycle. A mixing device is disposed within the lower portion of the housing for increasing the transfer of heat from the electronic device during the liquid-to-vapor-to-condensate cycle. The mixing device may include a vapor stirrer disposed above the liquid of the refrigerant and/or a liquid stirrer disposed in the liquid of the refrigerant for moving the liquid of the refrigerant over a boiler plate.