摘要:
In one embodiment, the invention is a method and apparatus for efficient incremental statistical timing analysis and optimization. One embodiment of a method for determining an incremental extrema of n random variables, given a change to at least one of the n random variables, includes obtaining the n random variables, obtaining a first extrema for the n random variables, where the first extrema is an extrema computed prior to the change to the at least one of the n random variables, removing the at least one of the n random variables to form an (n−1) subset, computing a second extrema for the (n−1) subset in accordance with the first extrema and the at least one of the n random variables, and outputting a new extrema of the n random variables incrementally based on the extrema of the (n−1) subset and the at least one of the n random variables that changed.
摘要:
In one embodiment, the invention is a method and apparatus for efficient incremental statistical timing analysis and optimization. One embodiment of a method for determining an incremental extrema of n random variables, given a change to at least one of the n random variables, includes obtaining the n random variables, obtaining a first extrema for the n random variables, where the first extrema is an extrema computed prior to the change to the at least one of the n random variables, removing the at least one of the n random variables to form an (n−1) subset, computing a second extrema for the (n−1) subset in accordance with the first extrema and the at least one of the n random variables, and outputting a new extrema of the n random variables incrementally based on the extrema of the (n−1) subset and the at least one of the n random variables that changed.
摘要:
In one embodiment, the invention is a method and apparatus for performing statistical timing analysis with non-separable statistical and deterministic variations. One embodiment of a method for performing timing analysis of an integrated circuit chip includes computing delays and slews of chip gates and wires, wherein the delays and slews depend on at least a first process parameter that is deterministic and corner-based and a second process parameter that is statistical and non-separable with the first process parameter, and performing a single timing run using the timing quantity, wherein the single timing run produces arrival times, required arrival times, and timing slacks at outputs, latches, and circuit nodes of the integrated circuit chip. The computed arrival times, required arrival times, and timing slacks can be projected to a corner value of deterministic variations in order to obtain a statistical model of the delays and stews at the corresponding corner.
摘要:
Systems and methods for statistical clock cycle computation and closing timing of an integrated circuit design to a maximum clock cycle or period. The method includes loading a design and timing model for at least one circuit path of an integrated circuit or a region of the integrated circuit into a computing device. The method further includes performing a statistical static timing analysis (SSTA) of the at least one circuit path using the loaded design and timing model to obtain slack canonical data. The method further includes calculating a maximum circuit clock cycle for the integrated circuit or the specified region of the integrated circuit in linear canonical form based upon the slack canonical data obtained from the SSTA.
摘要:
A method for verifying whether a circuit meets timing constraints by performing an incremental static timing analysis in which slack is represented by a distribution that includes sensitivities to various process variables. The slack at an endpoint is computed by propagating the arrival times and required arrival times of paths leading up to the endpoint. The computation of arrival and required arrival times needs the computation of delays of individual gate and wire segments in each path that leads to the endpoint. The mixed mode adds a deterministic timing to the statistical timing (DSTA+SSTA).
摘要:
A method for verifying whether a circuit meets timing constraints by performing an incremental static timing analysis in which slack is represented by a distribution that includes sensitivities to various process variables. The slack at an endpoint is computed by propagating the arrival times and required arrival times of paths leading up to the endpoint. The computation of arrival and required arrival times needs the computation of delays of individual gate and wire segments in each path that leads to the endpoint. The mixed mode adds a deterministic timing to the statistical timing (DSTA+SSTA).
摘要:
Aspects of the present invention provide solutions for projecting slack in an integrated circuit. A statistical static timing analysis (SSTA) is computed to get a set of Gaussian distributions over a plurality of variation sources in the integrated circuit. Based on the Gaussian distributions, a truncated subset and a remainder subset of the Gaussian distributions are identified. Then data factors that represent a ratio between the remainder subset and the truncated subset are obtained. These data factors are applied to the SSTA to root sum square (RSS) project the slack for the integrated circuit that takes into account the absence of the truncated subset.
摘要:
A method for performing a hierarchical statistical timing analysis of an integrated circuit (IC) chip design by abstracting one or more macros of the design. The method includes performing a statistical static timing analysis of at least one macro; performing a statistical abstraction of the macro to obtain a statistical abstract model of the macro timing characteristics; applying the statistical abstract model as the timing model for each occurrence of the macro leading to a simplified IC chip design; and performing a hierarchical statistical timing analysis of the simplified chip design. The method achieves a context aware statistical abstraction, where a generated statistical abstract model is instantiated for each macro of the chip during statistical static timing analysis at the chip level, providing a compressed and pruned statistical timing abstraction and reducing the model-size during the statistical abstraction.
摘要:
Aspects of the present invention provide solutions for projecting slack in an integrated circuit. A statistical static timing analysis (SSTA) is computed to get a set of Gaussian distributions over a plurality of variation sources in the integrated circuit. Based on the Gaussian distributions, a truncated subset and a remainder subset of the Gaussian distributions are identified. Then data factors that represent a ratio between the remainder subset and the truncated subset are obtained. These data factors are applied to the SSTA to root sum square (RSS) project the slack for the integrated circuit that takes into account the absence of the truncated subset.
摘要:
A method for performing a hierarchical statistical timing analysis of an integrated circuit (IC) chip design by abstracting one or more macros of the design. The method includes performing a statistical static timing analysis of at least one macro; performing a statistical abstraction of the macro to obtain a statistical abstract model of the macro timing characteristics; applying the statistical abstract model as the timing model for each occurrence of the macro leading to a simplified IC chip design; and performing a hierarchical statistical timing analysis of the simplified chip design. The method achieves a context aware statistical abstraction, where a generated statistical abstract model is instantiated for each macro of the chip during statistical static timing analysis at the chip level, providing a compressed and pruned statistical timing abstraction and reducing the model-size during the statistical abstraction.