Abstract:
A system for generating a variable frequency is provided. The system includes a voltage controlled oscillator (VCO) and an integrator. The VCO is configured to output a frequency signal with a frequency value dependent on a voltage value of a control signal. The integrator is configured to vary the control signal provided to the VCO. The ramp rate of the integrator is varied so the frequency value changes at a substantially constant frequency rate over a period of time, i.e. is linearized. In one configuration, the ramp rate of the integrator is based on an input value of an input signal to the integrator determined by a digital to analog convertor (DAC).
Abstract:
A Pseudo-Random Phase Modulation (PRPM) multiple-input-multiple-output (MIMO) radar system suitable for use on an automated vehicle includes a first transmit-antenna that transmits a first transmit-signal generated by a first PRPM-code, a second transmit-antenna that transmits a second transmit-signal generated by a second PRPM-code, a receive-antenna used to detect a first reflected-signal arising from the first transmit-signal and a second reflected-signal arising from the second transmit-signal, and a controller. The controller is in communication with the receive-antenna and is operable to generate the first PRPM-code and the second PRPM-code. The controller is configured to generate a first sub-channel-output based on a down-converted-signal from the receive-antenna and the first PRPM-code, generate a second sub-channel-output based on the down-converted-signal from the receive-antenna and the second PRPM-code, determine a first residue-signal based on the second sub-channel-output, and determine a first residue-removed-signal by subtracting the first residue-signal from the first sub-channel-output.
Abstract:
A bi-static radar system configured for coherent detection of a radar-signal includes a plurality of radar-transceivers, a controller, and a communications device. The plurality of radar-transceivers is characterized as physically spaced apart with respect to each other. The controller is in communication with the each of the radar-transceivers and is configured to coherently operate each of the radar-transceivers. The communications device communicates both a reference-clock signal and a frame-sync signal from the controller to each of the plurality of radar-transceivers whereby the plurality of radar-transceivers operate coherently. Alternatively, the system may include a reference-signal generator, a transmitter, and a plurality of receivers. The reference-signal generator generates a reference-signal characterized by a reference-frequency proportional to a fraction of a radar-frequency of a radar-signal transmitted. The transmitter generates the radar-signal at the radar-frequency based on the reference-signal. The plurality of receivers operates coherently to detect the radar-signal based on the reference-signal.
Abstract:
A circuit board assembly includes a low-frequency (LF) substrate, a monolithic microwave integrated circuit (MMIC), electrical components, a high-frequency (HF) substrate, and an antenna. The LF substrate is formed of FR-4 type material. The LF substrate defines a waveguide through the LF substrate. The MMIC is attached to the top-side of the LF substrate and outputs the radio-frequency signal. The electrical components are electrically attached to the LF substrate. The HF substrate is soldered to the top side of the LF substrate. An opening through the HF substrate surrounds the MMIC. A vertical transition guides the radio-frequency signal output by the MMIC to the waveguide. A plurality of wire bonds electrically connects the MMIC to the HF substrate and couple the radio-frequency signal from the MMIC to the vertical transition. The antenna is attached to the LF substrate and configured to radiate the radio-frequency signal from the waveguide.
Abstract:
A radar system includes a controller equipped with memory for storing data. The controller is configured to receive a time-domain signal representative of a reflected signal detected by an antenna, and transform the time-domain signal into a plurality of range datasets. Each range dataset corresponds to one of the plurality of chirps, each range dataset is represented by a series of values assigned to a plurality of range bins, and each of the values includes a sign bit. The controller is also configured to compress the plurality of range datasets by storing in the memory a portion of each of the values assigned to at least one of the plurality of range bins, wherein the portion is defined to exclude a first number of redundant sign bits of each value. The controller may further compress the portion by retaining a second number of bits of the data by excluding some of the least significant bits of each value.