摘要:
A valve bushing assembly for use in an injection molding apparatus is provided. The injection molding apparatus includes a manifold block, a valve pin, and an actuator block. The manifold block has at least one melt channel therein. The manifold block has an exterior surface that faces the actuator block, and has a manifold pass-through extending from the exterior surface to the at least one melt channel. The manifold pass-through has a manifold sealing surface therein. The manifold pass-through permits the valve pin to pass therethrough. The actuator block has an actuator attached thereto, that is operatively connected to the valve pin. The valve bushing assembly includes a bushing and a spacer. The bushing is adapted to be received in the manifold pass-through. The bushing has a bushing pass-through that is adapted to align with the manifold pass-through and is adapted to slidably receive the valve pin. The bushing has a bushing sealing surface that is adapted to cooperate with the manifold sealing surface to inhibit melt leakage therebetween. The bushing has a bushing shoulder. The spacer is positioned between the manifold block and the actuator block to space the manifold block and the actuator block from each other. The spacer has a first spacer surface that is adapted to contact the actuator block. The spacer has a second spacer surface that is adapted to contact the bushing shoulder. The spacer is adapted to be substantially free of contact with the manifold block.
摘要:
A hot runner apparatus includes a mold plate defining a pocket; a plurality of sub-manifolds; and a bridge manifold positioned in the pocket and between the sub-manifolds. The bridge manifold and the sub-manifolds are oriented in a common plane. The bridge manifold receives a melt from a melt source. Each of the sub-manifolds is coupled to the bridge manifold to receive the melt from the bridge manifold via a junction between an opening of a network of melt channels within the bridge manifold and an opening of a network of melt channels within each of the sub-manifolds. The sub-manifolds are urged against the bridge manifold to form a seal therebetween, when the bridge manifold and the sub-manifolds thermally expand urging the sub-manifolds against contact regions of a pair of opposing walls of the pocket. The respective opposing walls define a hollow region separated from the respective contact regions by a wall portion.
摘要:
One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
摘要:
A coinjection molding apparatus is disclosed that provides a skin material melt stream and a core material melt stream to a nozzle. A nozzle tip of the nozzle defines a central skin material melt passage for receiving the skin material melt stream, an annular core material melt passage for receiving the core material melt stream and an annular outer layer melt passage, which receives a portion of the skin material melt stream from the central skin material melt passage. The skin material melt stream from the central skin material melt passage forms an inner layer of a molded article, the core material melt stream from the core material melt passage forms a core layer of the molded article, and the skin material melt stream from the outer layer melt passage forms an outer layer of the molded article, wherein the three melt streams combine prior to entering a mold cavity.
摘要:
A valve gated hot runner nozzle with at least two transition members made of different materials located between a nozzle tip and a mold gate component to provide a thermal transition region. A first transition member in contact with the nozzle tip is less thermally conductive than a second transition member in contact with the mold gate component. The valve pin when in the closed position makes sealing contact with at least the second transition member such that cooling from the mold gate component is transferred to the valve pin to cool the melt in the mold gate area.
摘要:
A nozzle has a valve pin for controlling flow of molding material through a nozzle melt passage. An actuator has a stationary part and a movable part. The actuator further has an extending rod connected to the movable part thereof and a block connected to the rod, the block being movable with the moveable part of the actuator. A pivoting linkage element is rotatably connected to the block of the actuator and is connected to the valve pin of the nozzle. The pivoting linkage element moves the valve pin in response to movement of the movable part of the actuator. A bracket is connected to the stationary part of the actuator. Two sensors are connected to the bracket for detecting different positions of the block. The sensors may be air proximity sensors.
摘要:
The method and apparatus of the present invention includes a computer implemented injection molding configuring subsystem which enables a customer to interactively specify and design a system using a mix of parameters that the customer specifies and are manufacturing process determined. The configuring subsystem is connected to a computer network such as the Internet. The method and apparatus of the present invention further includes a computerized business and processing subsystem in communication with the configuring subsystem. The computerized business subsystem automatically provides a cost and schedule for a system configured by the configuring subsystem and additionally processes an order for the system. The processing subsystem automatically processes the customer's inputs and generates drawings for the configured system. Prior to receiving the customer's order, hot runner system components may be partially manufactured in a first phase and placed in inventory. The partially manufactured hot runner components may then be removed from inventory after receiving a customer's order, and further manufactured and assembled in accordance with the customer's parameters in a second phase.
摘要:
An injection molding apparatus having a sealing arrangement between a hot runner manifold and edge-gated nozzle that accommodates thermal expansion during operation is disclosed. A spacer element is axially fixed in position between the manifold and a mold plate in which the nozzle sits. The nozzle includes a reduced diameter spigot portion on an upstream end that is in a telescopic/slidable relationship with a bore of the spacer element. The nozzle includes radially extended nozzle tips axially fixed in position at a downstream end of the nozzle that are in fluid communication with respective mold gates and corresponding mold cavities. In the cold condition, a gap G exists between a shoulder of the nozzle proximate the spigot portion and a corresponding surface of the spacer element bore. Under operating conditions, thermal expansion of the nozzle is accommodated in a direction of the manifold by the gap.
摘要:
A bushing body has an upstream portion and a downstream portion for extending into a channel. The bushing body has a bore therethrough for receiving a valve pin. A contoured sleeve is fit around the downstream portion of the bushing body for guiding a flow of molding material. A cap piece is coupled to the upstream portion of the bushing body for contacting a back plate.
摘要:
A valve gated hot runner nozzle with at least two transition members made of different materials located between a nozzle tip and a mold gate component to provide a thermal transition region. A first transition member in contact with the nozzle tip is less thermally conductive than a second transition member in contact with the mold gate component. The valve pin when in the closed position makes sealing contact with at least the second transition member such that cooling from the mold gate component is transferred to the valve pin to cool the melt in the mold gate area.