摘要:
Gas separation by pressure swing adsorption (PSA) is performed within an apparatus having a plurality of adsorbers cooperating with first and second valves in a rotary PSA module, with the PSA cycle characterized by multiple intermediate pressure levels between the higher and lower pressures of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing laminated sheet adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor.
摘要:
A rotary module for implementing a high frequency pressure swing adsorption process includes a stator having a number of function compartments opening into the stator valve faces, a rotor rotatably coupled to the stator and including a number of apertures opening into the rotor valve faces, and a self-regulating clearance-type valve seal positioned between the valve faces of the stator and rotor so as to regulate the rate of gas flow between the stator and the rotor. Each valve seal includes a sealing face disposed adjacent a respective one of the rotor valve faces and is pivotable relative to the respective rotor valve face for varying the gas flow rate in accordance with the clearance distance between the sealing face and the respective rotor valve face. Each valve seal also includes a passage which communicates with one of the function compartments for varying the clearance distance in response to a pressure differential between the passage and an approaching aperture. In this way, the valve seal maintains a smooth pressure transition profile as the flow paths are switched between the function compartments. As a result, equilibrium is maintained between the adsorbent material and the mass transfer front of the gas, and the efficiency of the gas separation process is enhanced.
摘要:
Methods for forming adsorbent laminate structures particularly for use in pressure swing adsorption processes and devices are disclosed. One disclosed embodiment comprises providing a metal or alloy support and depositing adsorbent material onto the support by electrophoretic deposition. Adsorbent material also may be deposited on plural strips, which are then assembled into a laminate structure along the support. Adsorbers also are described comprising first and second wire mesh sheets having adsorbent material deposited on a first major planar surface thereof. The first and second sheets are placed adjacent one another and spaced sufficiently to define a flow channel. Another disclosed embodiment comprises plural wire mesh sheets having adsorbent material deposited on both first and second major opposed planar surfaces thereof, the sheets being spaced from each other to define a gas flow channel. The adsorber may include ventilation gaps to provide ventilation between flow channels.
摘要:
Various systems, method and apparatuses are disclosed that include a pressure swing adsorption apparatus coupled to a fuel cell, wherein the fuel cell receives at least a portion of a product gas from the pressure swing adsorption and powers the pressure swing adsorption apparatus. Also disclosed is a portable gas separator that include a housing that houses a rotary pressure swing adsorption apparatus.
摘要:
A chemical reaction is performed with separation of the product(s) and reactant(s) by pressure swing adsorption (PSA), using an apparatus having a plurality of adsorbers cooperating with first and second valve assemblies in a PSA module. The PSA cycle is characterized by multiple intermediate pressure levels between higher and lower pressure of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, entering from compressor stage(s) or exiting into exhauster or expander stages, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing the adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor. The reaction may be performed within a portion of the rotor containing a catalyst.
摘要:
A compact and efficient rotary pressure swing adsorption (PSA) apparatus with laminated sheet adsorbers is used to supply enriched oxygen and/or nitrogen streams to an internal combustion engine, allowing for reduced noxious emissions and enhanced engine performance.
摘要:
A chemical reaction is performed with separation of the product(s) and reactant(s) by pressure swing adsorption (PSA), using an apparatus having a plurality of adsorbers cooperating with first and second valve assemblies in a PSA module. The PSA cycle is characterized by multiple intermediate pressure levels between higher and lower pressures of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, entering from compressor stage(s) or exiting into exhauster or expander stages, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing the adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor. The reaction may be performed within a portion of the rotor containing a catalyst.
摘要:
Using zeolites as the active adsorbent, adsorbent laminates have been fabricated with various sheet supports. These adsorbent laminates have been successfully operated for oxygen enrichment at high PSA cycle frequencies, such as upwards of at least 150 cycles per minute. Methods for making suitable adsorbent laminates are described. The methods generally involve forming a slurry comprising a liquid suspending agent, an adsorbent and a binder. Laminates are made by applying the slurry to support material or admixing support material with the slurry. The slurry can be applied to support material using a variety of techniques, including roll coaters, split roll coaters, electrophoretic deposition, etc. One method for making laminates by mixing support material with the adsorbent slurry comprises depositing the slurry onto a foraminous wire, draining the slurry material, and pressing the material to form a ceramic adsorbent paper. Spacers can be formed on adsorbent laminates to space one laminate from another. The spacer dimensions can be uniform, or can vary along a laminate, such as increasing in height from a first end to a second end of the laminate. Gas flow-through apertures also can be formed on laminates. The laminates are adjacent one another to define flow channel between adjacent bodies, whereby a portion of a gas flowing through the flow channels flows through the apertures to facilitate pressure equalization in the adsorbent structure.
摘要:
Pressure swing adsorption (PSA) separation of a gas mixture is performed in an apparatus with a plurality of adsorbent beds. The invention provides rotary multiport distributor valves to control the timing sequence of the PSA cycle steps between the beds, with flow controls cooperating with the rotary distributor valves to control the volume rates of gas flows to and from the adsorbent beds in blowdown, purge, equalization and repressurization steps.
摘要:
Disclosed embodiments of the apparatus address the challenges of rotary PSA systems, both axial and radial flow, with M>1 by providing interpenetrating, layered manifolds to accommodate all of the steps of a complex PSA cycle, suitable with equal compactness for any value of “M”. This approach extends readily to accommodate a plurality of rotary PSA modules and their cooperating compression machinery within a single layered manifold assembly for a single PSA plant train. Described embodiments of the rotary PSA apparatus include stators that define fluid ports. In particular embodiments of the described apparatus, a second stator defines pressure swing adsorption cycle sectors, each sector being defined by a light product delivery port, light product withdrawal ports, and light reflux return ports. The adsorber elements may directly contact one or more of the stators in a fluidly sealing manner (i.e., have a clearance gap of from about 0 to about 50 microns) using described reinforced adsorbers. The method comprises providing an embodiment of the described apparatus and then supplying at least one feed fluid to pressurize an adsorber element of the adsorber sets to substantially a higher pressure to initiate a pressure swing adsorption cycle.