摘要:
Using zeolites as the active adsorbent, adsorbent laminates have been fabricated with various sheet supports. These adsorbent laminates have been successfully operated for oxygen enrichment at high PSA cycle frequencies, such as upwards of at least 150 cycles per minute. Methods for making suitable adsorbent laminates are described. The methods generally involve forming a slurry comprising a liquid suspending agent, an adsorbent and a binder. Laminates are made by applying the slurry to support material or admixing support material with the slurry. The slurry can be applied to support material using a variety of techniques, including roll coaters, split roll coaters, electrophoretic deposition, etc. One method for making laminates by mixing support material with the adsorbent slurry comprises depositing the slurry onto a foraminous wire, draining the slurry material, and pressing the material to form a ceramic adsorbent paper. Spacers can be formed on adsorbent laminates to space one laminate from another. The spacer dimensions can be uniform, or can vary along a laminate, such as increasing in height from a first end to a second end of the laminate. Gas flow-through apertures also can be formed on laminates. The laminates are adjacent one another to define flow channel between adjacent bodies, whereby a portion of a gas flowing through the flow channels flows through the apertures to facilitate pressure equalization in the adsorbent structure.
摘要:
Using zeolites as the active adsorbent, adsorbent laminates have been fabricated with various sheet supports. These adsorbent laminates have been successfully operated for oxygen enrichment at high PSA cycle frequencies, such as upwards of at least 150 cycles per minute. Methods for making suitable adsorbent laminates are described. The methods generally involve forming a slurry comprising a liquid suspending agent, an adsorbent and a binder. Laminates are made by applying the slurry to support material or admixing support material with the slurry. The slurry can be applied to support material using a variety of techniques, including roll coaters, split roll coaters, electrophoretic deposition, etc. One method for making laminates by mixing support material with the adsorbent slurry comprises depositing the slurry onto a foraminous wire, draining the slurry material, and pressing the material to form a ceramic adsorbent paper. Spacers can be formed on adsorbent laminates to space one laminate from another. The spacer dimensions can be uniform, or can vary along a laminate, such as increasing in height from a first end to a second end of the laminate. Gas flow-through apertures also can be formed on laminates. The laminates are adjacent one another to define flow channel between adjacent bodies, whereby a portion of a gas flowing through the flow channels flows through the apertures to facilitate pressure equalization in the adsorbent structure.
摘要:
Using zeolites as the active adsorbent, adsorbent laminates have been fabricated with various sheet supports. These adsorbent laminates have been successfully operated for oxygen enrichment at high PSA cycle frequencies, such as upwards of at least 150 cycles per minute. Methods for making suitable adsorbent laminates are described. The methods generally involve forming a slurry comprising a liquid suspending agent, an adsorbent and a binder. Laminates are made by applying the slurry to support material or admixing support material with the slurry. The slurry can be applied to support material using a variety of techniques, including roll coaters, split roll coaters, electrophoretic deposition, etc. One method for making laminates by mixing support material with the adsorbent slurry comprises depositing the slurry onto a foraminous wire, draining the slurry material, and pressing the material to form a ceramic adsorbent paper. Spacers can be formed on adsorbent laminates to space one laminate from another. The spacer dimensions can be uniform, or can vary along a laminate, such as increasing in height from a first end to a second end of the laminate. Gas flow-through apertures also can be formed on laminates. The laminates are adjacent one another to define flow channel between adjacent bodies, whereby a portion of a gas flowing through the flow channels flows through the apertures to facilitate pressure equalization in the adsorbent structure.
摘要:
The present disclosure relates to systems and processes for adsorptive gas separations where a first gas mixture including components A and B is to be separated so that a first product of the separation is enriched in component A, while component B is mixed with a third gas component C contained in a displacement purge stream to form a second gas mixture including components B and C, and with provision to prevent cross contamination of component C into the first product containing component A, or of component A into the second gas mixture containing component C. The invention may be applied to hydrogen (component A) enrichment from syngas mixtures, where dilute carbon dioxide (component B) is to be rejected such as directly to the atmosphere, and with preferably nitrogen-enriched air as the displacement purge stream containing residual oxygen (component C).
摘要:
Disclosed embodiments provide a system and method for producing hydrocarbons from biomass. Certain embodiments of the method are particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments of the method convert a biomass feedstock into a product hydrocarbon by hydropyrolysis. Catalytic conversion of the resulting pyrolysis gas to the product hydrocarbon and carbon dioxide occurs in the presence of hydrogen and steam over a CO2 sorbent with simultaneous generation of the required hydrogen by reaction with steam. A gas separator purifies product methane, while forcing recycle of internally generated hydrogen to obtain high conversion of the biomass feedstock to the desired hydrocarbon product. While methane is a preferred hydrocarbon product, liquid hydrocarbon products also can be delivered.
摘要:
The present invention provides a system and method for converting biomass into fluid hydrocarbon products to minimize the use of fossil fuels, provide energy and chemical feedstock security, and sustainable and/or carbon neutral electric power. One disclosed embodiment comprises performing fast pyrolysis on biomass to produce pygas and char using a maximum processing temperature of about 650° C. The pygas is provided to an independent reactor without the addition of an oxidizing agent for catalytically converting the pygas to hydrocarbons using a maximum processing temperature of about 650° C. The present invention also concerns a system comprising fast pyrolysis means producing a pygas and char, independent catalytic conversion means downstream of the fast pyrolysis for converting the pygas to hydrocarbons, and a hydrogen source, external to the system and/or produced by a steam reformer by steam reformation of at least a portion of the hydrocarbons, coupled to catalytic conversion means.
摘要:
Certain aspects of the system and method concern producing hydrocarbons from biomass. The method is particularly useful for producing substitute natural gas from forestry residues. A biomass feedstock may be converted into a product hydrocarbon by fast pyrolysis. The resulting pyrolysis gas is converted to the product hydrocarbon and carbon dioxide in the presence of hydrogen and steam while simultaneously generating the required hydrogen by reaction with steam under prescribed conditions for self-sufficiency of hydrogen. Methane is a preferred hydrocarbon product. A system also is described for cycling the catalyst between steam reforming, methanation and regeneration zones.
摘要:
A system and method for converting biomass into fluid hydrocarbon products to minimize the use of fossil fuels, provide energy and chemical feedstock security, and sustainable and/or carbon neutral electric power, are disclosed. For example, fast pyrolysis can be performed on biomass to produce pygas and char using a maximum processing temperature of about 650° C. The pygas is provided to an independent reactor without the addition of an oxidizing agent for catalytically converting the pygas to hydrocarbons using a maximum processing temperature of about 650° C. A system comprising fast pyrolysis means producing a pygas and char, independent catalytic conversion means downstream of the fast pyrolysis for converting the pygas to hydrocarbons, and a hydrogen source, external to the system and/or produced by a steam reformer by steam reformation of at least a portion of the hydrocarbons, coupled to catalytic conversion means, also are described.
摘要:
Embodiments of a thermochemical method to convert lignocellulosic biomass to a useful fuel are disclosed in a process sequence resulting in low levels of depositable tars in the output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. and under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones is extended well beyond the time required for methane formation. This sequence results in low depositable tars in the output gas stream.
摘要:
The present invention provides a system and method for producing hydrocarbons from biomass. The method is particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments convert a biomass feedstock into a product hydrocarbon by fast pyrolysis. The resulting pyrolysis gas is converted to the product hydrocarbon and carbon dioxide in the presence of hydrogen and steam while simultaneously generating the required hydrogen by reaction with steam under prescribed conditions for self-sufficiency of hydrogen. Methane is a preferred hydrocarbon product. A system also is disclosed for cycling the catalyst between steam reforming, methanation and regeneration zones.