摘要:
The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.
摘要:
The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.
摘要:
Apparatus and method for determining a two-dimensional temperature distribution in a cross-sectional path of a hot-temperature flow in a turbine engine (10). A grid (22, 24, 38) is located in a path of a hot-temperature flow in the turbine engine. A thermal imager (34) has a field of view configured to sense infrared emissions from the grid. A processor (50) is configured to generate data indicative of a two-dimensional temperature distribution in a cross-sectional path of the flow based on the sensed infrared emissions.
摘要:
Apparatus and method for temperature mapping a rotating component (12) in a high temperature combustion environment. The apparatus includes a thermal imager (14) having a field of view to sense infrared (IR) emissions. Emissivity of a surface of the component is subject to variation in the combustion environment. A radiance emitter (18) defines a spot within the field of view of the thermal imager. The spot indicates a respective emissivity value. A processor (30) is connected to the thermal imager to generate a radiance map of the component based on the IR emissions from the component. The processor includes a thermal calibration module configured to calibrate the radiance map based on the emissivity value of the spot within the field of view of the thermal imager to generate a calibrated thermal map of the component that displays absolute temperature over the surface of the component.
摘要:
Methods for maximum scene surface temperature estimation for blades with reflective surface properties in advanced stationary gas turbines are disclosed. The approach utilizes high speed infrared imagery provided by an online monitor system using a focal plan array (FPA) for near-infrared monitoring during engine runtime up to base load. The one waveband method for temperature estimation is assumed as starting point. A lower surface emissivity and higher surface reflectance of thermal barrier coating (TBC) in near-infrared can cause systematic estimation errors. Methods using the one wave band method, with the purpose to reduce estimation errors for maximum temperatures are also disclosed. Theoretical results, data from numerical simulations, and real data from engine test are provided. A system for performing temperature estimation methods is also disclosed.
摘要:
Apparatus and method for temperature mapping a rotating component (12) in a high temperature combustion environment. The apparatus includes a thermal imager (14) having a field of view to sense infrared (IR) emissions. Emissivity of a surface of the component is subject to variation in the combustion environment. A radiance emitter (18) defines a spot within the field of view of the thermal imager. The spot indicates a respective emissivity value. A processor (30) is connected to the thermal imager to generate a radiance map of the component based on the IR emissions from the component. The processor includes a thermal calibration module configured to calibrate the radiance map based on the emissivity value of the spot within the field of view of the thermal imager to generate a calibrated thermal map of the component that displays absolute temperature over the surface of the component.
摘要:
A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) and includes a sensor (118) in connection with a turbine blade (111) or vane (23). A transmitter assembly (117) includes a telemetry transmitter circuit/transceiver may be affixed on a turbine blade (111) or seal plate (115) proximate the turbine blade with a first connecting material (119) deposited on the turbine blade (111) for routing electronic data signals, indicative of a condition of the turbine blade (111), from the sensor (118) to the telemetry transmitter circuit/transceiver. An induction power system for powering the telemetry transmitter circuit/transceiver may include a rotating data antenna (116) affixed to the seal plate (115) with an electrical connection (122) between the telemetry transmitting circuit/transceiver for routing electronic data signals from the telemetry transmitter circuit/transceiver to the rotating data antenna (119).
摘要:
A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) and includes a sensor (118) in connection with a turbine blade (111) or vane (23). A transmitter assembly (117) includes a telemetry transmitter circuit/transceiver may be affixed on a turbine blade (111) or seal plate (115) proximate the turbine blade with a first connecting material (119) deposited on the turbine blade (111) for routing electronic data signals, indicative of a condition of the turbine blade (111), from the sensor (118) to the telemetry transmitter circuit/transceiver. An induction power system for powering the telemetry transmitter circuit/transceiver may include a rotating data antenna (116) affixed to the seal plate (115) with an electrical connection (122) between the telemetry transmitting circuit/transceiver for routing electronic data signals from the telemetry transmitter circuit/transceiver to the rotating data antenna (119).
摘要:
An imaging system for on-line imaging of a component in a gas turbine engine. The imaging system includes a flexible imaging bundle formed by a plurality of optical elements. An imaging end of the optical elements images a component in a hot gas path of the engine during operation of the engine and a viewing end provides an image of the component at a location displaced from the hot gas path. The optical elements are surrounded by a flexible metal sheath that is permeable to air to provide cooling air the optical elements from an air source surrounding the flexible imaging bundle.
摘要:
Optical camera systems for nondestructive internal inspection of online, operating power generation turbines, including gas turbine combustor and turbine sections that are at high operating temperatures in the range of over 600° C. (1112° F.). The system includes one or more temperature and vibration-compensating lens systems in the optical tube mount. The lens is circumferentially retained within a lens mount, with a mounting ring in contact with only the lens axial face. A biasing element exerts axially oriented biasing force on the first lens face through the first mounting ring, allowing for mount flexure in response to operational turbine vibration and temperature changes. The lens mount is advantageously combined with aspheric lenses capable of withstanding continuous operating temperatures above 600° C. The aspheric lenses, alone or in combination with spherical lenses, establish a wider field of view, and require fewer lenses in combination than lens mounts incorporating only spherical lenses.