Abstract:
A saturating inductor or transformer is used to shape input current flowing into an alternating current (AC) to direct current (DC) power supply to correct the power factor for the supply. If a saturable inductor is used, it is connected to feed current into the power supply and a capacitor is connected across the input of the power supply. The capacitor precharges the saturable inductor to a point just short of saturation during a preliminary portion of each sinusoidal half cycle of the input AC power. For steady state operation, this is the point at which current will start to flow into the AC to DC power supply and the inductor will saturate. Since the inductance falls in accordance with a permeance curve characteristic of material used to construct the inductor, the current will continue to flow at the same or an increasing level despite the declining voltage level of the AC input power. In the final portion of each half cycle of the input AC power, power stored in the inductor and capacitor discharges into the power supply to extend the current flow beyond its normal point of termination. If a saturable transformer is used, it is connected to feed current into the power supply through a secondary winding of the transformer with a primary winding of the transformer being connected to a common low voltage or ground of the source of AC power and the AC to DC power supply either directly or through primary current control means. For this embodiment, transformer action boosts the voltage level applied to the AC to DC power supply which also serves to precharge the secondary winding. As the current builds, the transformer nears saturation toward the peak of the input voltage waveform. Operation is similar in that current continues to flow or even increase during a portion of the declining voltage of the input power due to the reduced inductance caused by saturation of the transformer.
Abstract:
A device and method for dissipating heat from a source of heat is described. A plurality of layers of thermally conductive materials receives a flow of heat from a source of heat. A first layer of the plurality of layers receives the flow of heat from the source of heat and redirects and transfers the flow of heat to a second of the plurality of layers. Each layer has a separate preselected thermal impedance to control a desired temperature change across the plurality of layers and to maintain a desired operating temperature of the source heat.
Abstract:
A method of determining the quality of a sensed signal has capturing, comparing, categorizing, and a decision-making steps. The capturing step is used to capture a plurality of signals. A magnitude of each of the plurality of signals is compared to a predetermined value to determine a relationship between each of the plurality of signals to the predetermined value. A result of each comparison is categorized according to one of a plurality of predetermined criteria. The categorizing step is repeated at least until a predetermined number of results has been reached in at least one of the plurality of predetermined criteria. A decision is made based on which of the plurality of predetermined criteria reaches the predetermined number.
Abstract:
The present invention describes a method and circuitry for igniting high frequency operated, high intensity discharge lamps by means of a dual resonant circuit driven by a nonsinusoidal waveform; typically a square wave in the preferred embodiment. A capacitor in series with the lamp is selected to resonate at the fundamental frequency of the applied waveform when the lamp is in the on condition, providing thereby the high frequency power to the lamp for its normal operation. A capacitor in parallel with the lamp is chosen to resonate at a higher harmonic of the applied frequency, typically the third harmonic, when the lamp is in the off condition. Hysteresis heating causes the ignition voltage of the lamp to decrease as higher frequency power is applied, leading to ignition of the lamp at the third harmonic without applying to the lamp one or more pulses of high voltage. An alternative embodiment of the present invention uses dc offset circuitry to apply dc voltage to the lamp at typically an integral multiple of the peak value of the alternating applied voltage.
Abstract:
A device and method for dissipating heat from a source of heat is described. A plurality of layers of thermally conductive materials receives a flow of heat from a source of heat. A first layer of the plurality of layers receives the flow of heat from the source of heat and redirects and transfers the flow of heat to a second of the plurality of layers. Each layer has a separate preselected thermal impedance to control a desired temperature change across the plurality of layers and to maintain a desired operating temperature of the source heat.
Abstract:
Apparatus (10, 12, 14, 16, 18, 20) for conversion of a rotary drive force such as from a drive motor (22) into a vectored linear force m a known, controlled and predictable manner. The vectored linear force may be used for lifting/moving objects, pushing objects through water or into space. The vectored linear force is generated without the expulsion of mass or reaction with an external material or medium. As a consequence, the force generating apparatus may be embodied within an enclosed system having an energy source for generating the rotary drive force that can sourced from ordinary means such as an electrical generator, or from hydraulic or other mechanical sources.
Abstract:
Intermittent electrical power is applied to a lamp ballast to achieve reliable ignition within specifications of the related hardware. The operating state of the lamp is sensed to facilitate application of the power during lamp ignition. Control circuitry associated with a ballast is operable to interrupt the ionizing potential once prior to the lamp's reaching an igniting state. That is, an ignition cycle associated with the ionizing potential may be intermittent, having an interruption, or “off” period. For example, a ten-second ignition cycle may include a one-second “on” period, followed by nine-seconds of no ionizing potential. The ignition sequence and associated intermittent ionizing potential supply will repeat as necessary to achieve lamp ignition. The intermittent nature of the ballast output enables the lamp to achieve an ignited state in manner that obviates the need for large, damaging voltage spikes. This feature mitigates loss of material from electrodes, the occurrence of tube blackening and the shortening of lamp life. Consequently, the efficiency of the lamp is improved over time, and lamp operation requires less applied power. Timing protocol of the invention additionally ensures compatibility with conventional RMS and other equipment ratings, reducing requirements for high voltage wiring and sockets.
Abstract:
A device to provide sterilized surfaces and skin with the application of multiple bactericidal agents in combinations accentuating each agent's efficacy. UV, IR, and potentially others, in conjunction with minimal Ozone levels conditioned to rapidly move through the air surface/boundary layer for effective and timely activation of oxidizing effects on bacterial agents and secondarily through surface layer absorption for continued bacterial inactivation/oxidation after the stenlization event has occurred.
Abstract:
A lamp having a light emitting diode, a Peltier device, a heat sink, a translucent thermally conductive window, and an optical fluid. The Peltier device is in thermal communication with the light emitting diode and converts a waste thermal energy discharged by the light emitting diode into an electrical energy. Conductors transfer the electrical energy from the Peltier device to a boost circuit which converts a level of a voltage associated with the electrical energy output from the Peltier device to a higher, more useful value. The heat sink transfers a second thermal energy from the Peltier device. The optical fluid is located between the translucent, thermally conductive window and the light emitting diode. The optical fluid has an angle of diffraction having an intermediate value relative to an angle of diffraction associated with the light emitting diode and an angle of diffraction associated with the translucent, thermally conductive window.
Abstract:
The operation of gas discharge devices involves stabilizing drive stage with a highly dynamic load exhibiting both negative resistance and non-linear behavior. Stabilization is typically accomplished by inserting impedance in series with the plasma load so the combination impedance has a voltage division that is characterized by the intersection of the linear series impedance and the instantaneous voltage-current. This is stable as long as there is an ample excess of voltage driving the plasma/series impedance complex. However providing series impedance that insures stable operation over varying power levels, lamp types/chemistries and changes resulting from aging can lead to inefficient operation as a result of either high voltage/power drops in the series impedance or a high source voltage driving smaller impedance. A method to optimize the series impedance and driving voltage through a dynamic adjustment process of both the voltage and impedance parameters to provide stable gas plasma drive and maximize system efficiency is described.