摘要:
Oxidation protection of a titanium-based alloy is provided with improved fatigue properties by a titanium aluminide coating of between 2 to 12 microns by diffusing the Al into the Ti at a temperature below the melting point of the Al. The coating is gas deposited and protects the titanium-based alloys from oxidation at high temperature utilization.
摘要:
Oxidation protection of a titanium-based alloy is provided with improved fatigue properties by a titanium aluminide coating of between 2 to 12 microns by diffusing the Al into the Ti at a temperature below the melting point of the Al. The coating is gas deposited and protects the titanium-based alloys from oxidation at high temperature utilization.
摘要:
A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1–20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800–975° C. and over 3 to 15 minutes.
摘要:
A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1-20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800-975° C. and over 3 to 15 minutes.
摘要:
Components and methods of forming a protective coating system on the components are provided. In an embodiment, and by way of example only, the component includes a ceramic substrate and a braze layer disposed over the ceramic substrate. The braze layer includes a silicon matrix having a first constituent and a second constituent that is different than the first constituent. The first constituent forms a first intermetallic with a portion of the silicon matrix and the second constituent forms a second intermetallic with another portion of the silicon matrix, wherein the braze layer is formulated to provide a barrier to oxygen diffusion therethrough.
摘要:
A turbine blade tip and shroud clearance control coating system comprising an abrasive blade tip coating and an abradable shroud coating are provided. The abrasive layer may comprise abrasive particles of cubic zirconia, cubic hafnia or mixtures thereof, and the abradable layer may be a nanolaminate thermal barrier coating that is softer than the abrasive layer. The invention further provides an alternate coating system comprising an abradable blade tip coating and an abrasive shroud coating.
摘要:
A protective barrier coating system including a diffusion barrier coating and an oxidation barrier coating and method for use in protecting silicon-based ceramic turbine engine components. A complete barrier coating system includes a thermal barrier coating of stabilized zirconia and an environmental barrier coating of an alloyed tantalum oxide. The oxidation barrier coating includes a layer of metallic silicates formed on a substrate of silicon nitride or silicon carbide to be protected. The oxidation barrier coating can include silicates of scandium, ytterbia or yttrium. The oxidation barrier coating may also include an inner layer of Si2ON2 between the diffusion barrier and the metallic silicate layer. The oxidation barrier coating can be applied to the substrate by spraying, slurry dipping and sintering, by a sol-gel process followed by sintering, by plasma spray, or by electron beam-physical vapor deposition. The diffusion layer of essentially pure Si3N4 can be applied to the substrate to prevent the migration of damaging cations from the protective layers to the substrate and is preferably formed by chemical vapor deposition. A method for protecting silicon based substrates can comprise a step of forming an oxidation barrier coating on a substrate, where a step of forming the oxidation barrier includes a step of sintering the oxidation barrier and substrate in a wet gas containing hydrogen.
摘要翻译:一种包括扩散阻挡涂层和氧化屏障涂层的保护性屏障涂层系统以及用于保护硅基陶瓷涡轮发动机部件的方法。 完整的阻隔涂层系统包括稳定的氧化锆的隔热涂层和合金化氧化钽的环境屏障涂层。 氧化阻挡涂层包括在待保护的氮化硅或碳化硅的衬底上形成的金属硅酸盐层。 氧化屏障涂层可以包括钪,镱或钇的硅酸盐。 氧化阻隔涂层还可以包括扩散阻挡层和金属硅酸盐层之间的Si 2 2 2 N 2的内层。 通过喷雾,浆料浸渍和烧结,通过溶胶 - 凝胶法烧结,通过等离子体喷涂,或通过电子束 - 物理气相沉积,可将氧化阻隔涂层施加到基材上。 可以将基本上纯的Si 3 N 4 N 4的扩散层施加到基底上,以防止损伤的阳离子从保护层迁移到基底,并且优选地由化学 气相沉积。 用于保护硅基基板的方法可以包括在基板上形成氧化阻挡涂层的步骤,其中形成氧化屏障的步骤包括在含氢的湿气中烧结氧化阻挡层和基板的步骤。
摘要:
Oxidation protection of a titanium heat exchanger is provided by a titanium aluminide or solgel coating. The coating protects bare titanium and brazed surfaces of the heat exchanger.
摘要:
A coated component is provided comprising a silicon-based substrate and a braze layer overlying the silicon-based substrate. The braze layer comprises silicon, tantalum, and a metal element having substantially the same melt temperature with silicon as tantalum has with silicon. The braze layer further comprises ceramic particles. Protective coatings are also provided.
摘要:
A method for stabilizing a porous thermal barrier coating plasma sprayed on a substrate comprises the steps of immersing the porous thermal barrier coating in a sol gel comprising a metal oxide or precursor thereof, a solvent, and a surfactant, applying vacuum pressure to the sol gel to infiltrate the porous thermal barrier coating with the sol gel, and drying the sol gel to produce residual metal oxide particles in the porous thermal barrier coating.