摘要:
A method and apparatus for supporting home Node B (HNB) services are disclosed. A wireless transmit/receive unit (WTRU) receives HNB access restriction information from an HNB and accesses the HNB if an access to the HNB is allowed based on the HNB access restriction information. The HNB access restriction information may be a closed subscriber group identity (CSG ID), a status bit indicating whether an HNB cell is available or not, an identity of WTRUs that are allowed to access the HNB, information indicating whether an access to a cell is barred or not. The WTRU may trigger measurements for cell reselection even though signal strength on a currently connected cell is above a threshold. The measurement may be triggered manually, periodically, under the instruction from the network, or based on a neighbor cell list including information about HNB cells located nearby.
摘要:
A method and apparatus for acknowledge mode data (AMD) re-segmentation are disclosed. An AMD protocol data unit (PDU) is generated from at least one RLC SDU. The AMD PDU size is within a flexible maximum AMD PDU size. The original AMD PDU is stored in a retransmission buffer, and transmitted. If transmission of the original AMD PDU fails and the original AMD PDU size is larger than an updated maximum AMD PDU size, the original AMD PDU is segmented to segmented AMD PDUs. If transmission of one of the segmented AMD PDUs fails, the original AMD PDU may be re-segmented to smaller size AMD PDUs.
摘要:
Method and apparatus for receiving high speed downlink shared channel (HS-DSCH) transmissions are disclosed. An HS-DSCH medium access control (MAC-ehs) entity receives MAC-ehs protocol data units (PDUs) via a high speed downlink shared channel (HS-DSCH) while in one of Cell_FACH, Cell_PCH, and URA_PCH states. The reordering PDUs included in the MAC-ehs PDUs may be sent to a next processing entity without performing reordering of the PDUs. A certain reordering queue may enter a suspend state upon occurrence of a triggering event and MAC-ehs PDUs distributed to the reordering queue in the suspend state may be forwarded to the next processing entity without performing reordering. MAC-ehs reset procedure may be extended for a certain transmission such that the MAC-ehs reset is performed after receiving a MAC-ehs PDU in a target cell.
摘要:
A method and apparatus for controlling an optimization of handover procedures between universal terrestrial radio access (UTRA) release 6 (R6) cells and UTRA release 7 (R7) cells are disclosed. When a wireless transmit/receive unit (WTRU) is moving between an R6 cell and an R7 cell, or between R7 cells, a handover is initiated from a source Node-B to a target Node-B. In the R7 cell, the enhanced medium access control (MAC) functionality including flexible radio link control (RLC) protocol data unit (PDU) size and high speed MAC (MAC-hs) segmentation and multiplexing of different priority queues are supported. After the handover, a MAC layer and/or an RLC layer are reconfigured or reset based on functionality supported by the target Node-B.
摘要:
A method and apparatus for transmitting and receiving common logical channel and dedicated logical channel transmissions via a high speed downlink shared channel (HS-DSCH) are disclosed. A medium access control (MAC)-hs entity generates a MAC-hs protocol data unit (PDU) carrying a MAC-c/sh/m PDU and/or a MAC-d PDU. A UE-specific HS-DSCH radio network temporary identifier (H-RNTI) may be used for the MAC-d PDU, and a cell-specific H-RNTI may be used for the MAC-c/sh/b PDU. Alternatively, a cell-specific H-RNTI and one of a cell RNTI (C-RNTI) and a universal terrestrial radio access network RNTI (U-RNTI) may be used in a Cell_FACH state. The logical channel type and identity may be inserted in a MAC-hs PDU header or indicated by a distinct H-RNTI. A logical channel type for common logical channels may be identified in a MAC-c/sh/m PDU header. The logical channel type and identity may be identified by a queue identity.
摘要翻译:公开了一种经由高速下行链路共享信道(HS-DSCH)发送和接收公共逻辑信道和专用逻辑信道传输的方法和装置。 介质访问控制(MAC)-hs实体生成携带MAC-c / sh / m PDU和/或MAC-d PDU的MAC-hs协议数据单元(PDU)。 UE特定的HS-DSCH无线电网络临时标识符(H-RNTI)可以用于MAC-d PDU,并且小区特定H-RNTI可以用于MAC-c / sh / b PDU。 或者,可以在Cell_FACH状态中使用小区特定H-RNTI和小区RNTI(C-RNTI)和通用陆地无线接入网络RNTI(U-RNTI)中的一个。 逻辑信道类型和身份可以被插入到MAC-hs PDU报头中或由不同的H-RNTI指示。 用于公共逻辑信道的逻辑信道类型可以在MAC-c / sh / m PDU报头中被识别。 逻辑信道类型和身份可以由队列标识来标识。
摘要:
A wireless transmit/receive unit (WTRU) reports a buffer status as part of scheduling information for enhanced dedicated channel (E-DCH) transmissions. For reporting the buffer status, the WTRU calculates a total amount of data available across all logical channels for which reporting is requested by a radio resource control (RRC) entity. The total amount of data includes an amount of data that is available for transmission and retransmission at a radio link control (RLC) entity and an amount of data that is available for transmission in a medium access control for enhanced dedicated channel (MAC-i/is) segmentation entity in case that a MAC-i/is entity is configured. The WTRU sends scheduling information including a total E-DCH buffer status (TEBS) field that is set based on the total amount of data.
摘要:
A method and apparatus for controlling an optimization of handover procedures between universal terrestrial radio access (UTRA) release 6 (R6) cells and UTRA release 7 (R7) cells are disclosed. When a wireless transmit/receive unit (WTRU) is moving between an R6 cell and an R7 cell, or between R7 cells, a handover is initiated from a source Node-B to a target Node-B. In the R7 cell, the enhanced medium access control (MAC) functionality including flexible radio link control (RLC) protocol data unit (PDU) size and high speed MAC (MAC-hs) segmentation and multiplexing of different priority queues are supported. After the handover, a MAC layer and/or an RLC layer are reconfigured or reset based on functionality supported by the target Node-B.
摘要:
A method and apparatus for segmenting medium access control (MAC) service data units (SDUs) creates enhanced MAC-es PDUs in the enhanced MAC-e/es sub-layer by concatenating MAC SDUs received from the logical channels. An enhanced transport format combination (E-TFC) selection entity controls the concatenation of MAC SDUs into enhanced MAC-es PDUs. When a MAC SDU is received that is too large to fit into a selected enhanced MAC-es PDU payload, a segmentation entity segments the MAC SDU such that the MAC SDU segment fills the remaining payload available in the selected enhanced MAC-es PDU. The enhanced MAC-es PDU is then assigned a transmission sequence number (TSN) and multiplexed with other enhanced MAC-es PDUs to create a single enhanced MAC-e PDU that is transmitted on the E-DCH in the next transmission time interval (TTI). A HARQ entity stores and, if necessary retransmits the enhanced MAC-e PDU when a transmission error occurs.
摘要:
A variety of wireless communication methods and apparatus for supporting reconfiguration of radio link control (RLC) parameters are disclosed. A radio resource control (RRC) reconfiguration message is generated that indicates that an RLC unit in a wireless transmit/receive unit (WTRU) or a universal terrestrial radio access network (UTRAN) should be reconfigured from supporting flexible size RLC protocol data units (PDUs) to supporting fixed size RLC PDUs. If an information element (IE) “one sided RLC re-establishment” is present in the RRC reconfiguration message, only a receiving side subassembly in the RLC unit is re-established. Otherwise, both the receiving side subassembly and a transmitting side subassembly in the RLC unit are re-established. Flexible size RLC PDUs may be discarded and a message indicating the discarded flexible size RLC PDUs may be transmitted. The flexible size RLC PDUs may be modified such that they correspond to a set of pre-defined sizes.
摘要:
A method and apparatus for acknowledge mode data (AMD) re-segmentation are disclosed. An AMD protocol data unit (PDU) is generated from at least one RLC SDU. The AMD PDU size is within a flexible maximum AMD PDU size. The original AMD PDU is stored in a retransmission buffer, and transmitted. If transmission of the original AMD PDU fails and the original AMD PDU size is larger than an updated maximum AMD PDU size, the original AMD PDU is segmented to segmented AMD PDUs. If transmission of one of the segmented AMD PDUs fails, the original AMD PDU may be re-segmented to smaller size AMD PDUs.