摘要:
Disclosed is a method and apparatus of estimating a state of health (SOH) of a battery using internal resistance, which has been found to act as a parameter exerting the greatest influence on the SOH of the battery. The method comprises the steps of: storing an SOH estimation table constructing SOH values corresponding to various values of internal resistance according to temperature and a state of charge (SOC) in a memory; performing measurement of the temperature and estimation of the SOC of the battery when a request is made to estimate the SOH; detecting the internal resistance value of the battery; and reading the SOH values corresponding to the measured temperature, the estimated SOC of the battery, and the detected internal resistance value of the battery from the SOH estimation table.
摘要:
Disclosed are an apparatus and a method for accurately estimating a state of charge of a battery, which can measure a change of temperature and an open circuit voltage so as to estimate the state of charge at an initial time when a vehicle is not driven, and while measuring a decrement in a capacity of a battery according to charging and discharging of the battery when the vehicle is driven. The method includes the steps of: measuring a temperature in an initial estimation of the state of charge; measuring an open circuit voltage; obtaining parameters indicating a change of the open circuit voltage according to a change of temperature; and calculating the state of charge using the parameters and the open circuit voltage which is measured depending on the obtained parameters. The method further includes the steps of: measuring electric current in order to integrate the electric current during an estimation of the state of charge after initial time; calculating a decrement in capacity of the battery according to cycles; and estimating the state of charge by dividing a value, which is obtained by integrating electric current, by the decrement in the capacity of the battery according to the cycles.
摘要:
Disclosed is a method of estimating a maximum output of a battery for a hybrid electric vehicle (HEV). The method comprises steps of: extracting maximum charge/discharge outputs of the battery depending on a plurality of charged states (SOC) of the battery under which the vehicle is able to be driven and calculating an interrelation between them; extracting maximum charge/discharge outputs of the battery at plural temperatures under which the vehicle is able to be driven, and calculating an interrelation between them; extracting degradations of outputs of the battery as a capacity of the battery is discharged during the traveling, and calculating an interrelation between them; and based on the interrelations obtained from each of the steps, estimating a maximum output (Powermax) of the battery through a following function. Power max = F ( SOC , temp , accumulated discharge Ah ) = F ( SOC , temp ) ⨯ F ( accumlated discharge Ah )
摘要:
Disclosed is an apparatus and method for estimating a state of charge (SOC) in a battery, in which the battery SOC is estimated using a fusion type soft computing algorithm, thereby accurately estimating the battery SOC in a high C-rate environment. The apparatus includes a detector unit for detecting current, voltage and temperature of a battery cell; and soft computing unit for outputting a battery SOC estimation value of processing the current, the voltage and the temperature detected by the detector unit using a radial function based on a neural network algorithm. Especially, the soft computing unit combines the neural network algorithm with any one of a fuzzy algorithm, a genetic algorithm (GA), a cellular automata (CA) algorithm, an immune system algorithm, and a rough-set algorithm, and thereby adaptively updates the parameters of the neural network algorithm.
摘要:
Disclosed is a method for estimating the maximum power of a battery, which can inexpensively perform an estimation of the maximum power of a battery in a relatively simple manner of using the internal resistance of the battery, which has a correlation with and a largest effect on the maximum power of the battery. The method includes the steps of: measuring an internal resistance and a temperature of the battery and estimating a state of charge, if an estimation of the maximum power of the battery is requested; and reading a value of the maximum power of the battery, which corresponds to the measured temperature, the estimated state of charge, and the measured internal resistance, from a table in which the internal resistances and the maximum powers of the battery are mapped according to the temperatures and states of charge.
摘要:
Disclosed is an apparatus and method for controlling the discharge or charge power of a battery, capable of preventing over-charge and over-discharge of battery cells according to states of the battery cells, and solving a problem that the lifetime of a conventional battery pack is rapidly reduced due to the over-charge or over-discharge of some cells of the battery pack. The method includes the steps of estimating the maximum power of the battery, measuring voltage of a battery cell or pack, checking whether or not the voltage of the battery cell or pack deviates from a preset limited range so as to correspond to the maximum power, and when the voltage of the battery cell or pack deviates from a preset limited range, controlling the discharge or charge power of the battery.
摘要:
Disclosed is a method for setting an initial SOC value, which initializes the SOC in consideration of not only the temperature change of the external environment of the battery but also the internal temperature change of the battery before the battery reaches a stable unloaded state, thereby enhancing the accuracy in the setup of the initial SOC value. The method includes: measuring internal temperatures of the battery and SOCs corresponding to voltages of the battery, which change according to the time passage after a loaded state is converted into an unloaded state, and constructing an SOC estimation table by using measured values, and storing the SOC estimation table; measuring the internal temperature and the voltage of the battery when estimation of an initial SOC value of the battery is required; and reading an SOC corresponding to the measured internal temperature and the voltage of the battery from the SOC estimation table.
摘要:
Disclosed are apparatus and method for discharging a voltage in a battery pack. The apparatus comprises a discharge resistance connected to a discharge target battery of plural batteries in the battery pack and discharging a voltage of the discharge target battery; a switching section for connecting the discharge target battery and the discharge resistance; a voltage measuring section for measuring a voltage of the discharge target battery; and a control section for controlling the switching section depending on the measured voltage value of the battery so as to maintain an energy consumed in the discharge resistance to be constant. The method comprises measuring a voltage of a discharge target battery of plural batteries in the battery pack; calculating a PWM duty rate of a switching section connecting the discharge target battery and a discharge resistance using the measured voltage value and a value of the discharge resistance; and controlling the switching section depending on the duty rate to maintain an energy consumed in the discharge resistance to be constant.
摘要:
A member for measurement of cell voltage and temperature in a battery pack comprises temperature measuring elements (a) attached to the surfaces of unit cells, and a printed circuit board (b) having protrusions formed at the upper end thereof such that the protrusions are connected to electrode lead connection members that connect electrode leads of the unit cells, connection parts formed at the lower part thereof for allowing the temperature measuring elements to be attached to the printed circuit board, and a circuit through which electric current for voltage measurement of the unit cells and electric current for temperature measurement of the temperature measuring elements flow.
摘要:
Disclosed herein is a cooling system for a battery pack that is usable as a power source of electric vehicles and hybrid-electric vehicles. The cooling system has the effect of effectively dissipating heat generated from battery cells by supplying a refrigerant to the battery cells at a constant flow rate, and of minimizing a temperature difference between the battery cells during a cooling process. This prevents degradation in the performance of the battery cells, and achieves optimal temperature control. Also, the cooling system employs a single refrigerant guide member arranged at a side of the battery pack, resulting in a reduction in the size of an overall battery system.