摘要:
A method of cardiac gating for use in an imaging apparatus includes monitoring a patient's cardiac cycle, and determining a cardiac cycle time for the patient. A desired cardiac phase of interest is selected, and a delay from a reference point in the cardiac cycle is determined. The delay is a function of the selected cardiac phase and the cardiac cycle time. Finally, the selected cardiac phase is located in the cardiac cycle using the delay. This cardiac gating method compensates for non-uniform changes in the patient's cardiac cycle corresponding to a non-uniform distribution of cardiac phases in the patient's cardiac cycle.
摘要:
In a diagnostic cardiac imaging session of a patient's heart using a computed tomography imaging scanner (10) and a cardiac cycle monitor (42), a diagnostic objective (100) is received. Survey imaging (104) of the heart is performed to determine optimized imaging parameter values for the received diagnostic objective (100). Monitor imaging (108) of a limited portion of the heart is performed during influx of a contrast agent (22) using a low patient x-ray exposure condition to detect a trigger condition. Volume imaging (110) of the heart responsive to detection of the trigger condition is performed using the optimized imaging parameter values to obtain volumetric imaging data. Cardiac cycle data is recorded during at least a portion of the survey imaging (104), the monitor imaging (108), and the volume imaging (110). High resolution reconstructing (130) of at least some volumetric imaging data is performed to produce high resolution image representations (132).
摘要:
A needle biopsy system (10) includes a biopsy needle (210), and a needle support assembly (200). The needle support assembly (200) holds the biopsy needle (210) and manipulates the biopsy needle (210) in response to received control signals. A needle simulator (250) having an input device (252) generates the control signals in response to manipulation of the input device (252) by an operator. The operator, in turn, receives feedback from the needle simulator (250) in accordance with forces experienced by the biopsy needle (210). In a preferred embodiment, the feedback received by the operator includes tactile sensations experienced by the operator as the operator manipulates the input device (252). The tactile sensations mimic those the operator would have received had the operator directly manipulated the biopsy needle (210). Optionally, a curved needle guide (280) is employed to restrict the biopsy needle's progression longitudinally therethrough.
摘要:
Computed tomography (CT) data (28) is collected for a plurality of slices by a CT scanner (10). At least a portion of the CT data is reconstructed (32) to form a volume image (34) defined by a plurality of two-dimensional image slices. At least one starting point is identified (72) within a blood vessel imaged in the three-dimensional image volume (34). The blood vessel is recursively tracked (70) to form a blood vessel representation (92).
摘要:
A CT scanner (10) for obtaining a medical diagnostic image of a subject includes a stationary gantry (12), and a rotating gantry (14) rotatably supported on the stationary gantry (12) for rotation about the subject. A plurality of temporally displaced volume images are gathered, divided into slices, and stored in slice memories (541, 542, . . . 54n). A slice comparitor (58) compares each slice to a selected reference slice. The slices are transformed by a slice transformer (60) to align the slices thereby correcting for movement of the subject over the scan period.
摘要:
A CT scanner (10) for obtaining a medical diagnostic image of a subject includes a stationary gantry (12), and a rotating gantry (14). The detected radiation is reconstructed and divided into sub-portions, which sub-portions are aligned by a registration processor (56). The registered images are stored in a high resolution memory (58) and a maximum artery enhancement value is calculated from the high resolution images. A resolution reducer (82) reduces the resolution of the high resolution images. Time-density curves are found for the voxels of the images, which time-density curves are truncated to eliminate unwanted data, and analyzed to determine characteristic values. A perfusion calculator (106) calculates perfusion by using the maximum artery enhancement value and the characteristic values. A diagnostician can view any one of a low resolution image, a high resolution image, and a perfusion image on a video monitor (112).
摘要:
A cardiac gated spiral CT scanner (10) has a source of penetrating radiation (20) arranged for rotation about an examination region (14) having a central axis extending in a z direction. The source (20) emits a beam of radiation (22) that passes through the examination region (14) as the source (20) rotates. A patient support (30) holds a patient within the examination region (14) and translates the patient through the examination region (14) in the z direction while this source (20) is rotated such that the source (20) follows a helical path relative to the patient. A control processor (90) implements a patient-specific scan protocol in response to measured patient characteristics (for example, the patient's heart rate, the patient's breath hold time, and/or the range of coverage in the z direction based on the patient's anatomy) and scanner characteristics (for example, the number of detector rings, and/or the scan rate). Radiation detectors (40) are arranged to receive radiation from the source (20) after it has traversed the examination region (14). An ECG monitor (80) acquires ECG data from the patient. The ECG data is used to correlate phases of the patient's heart with data collected by the radiation detectors (40). An image reconstruction processor (60) reconstructs image representations of the patient based on data received from the radiation detectors (40) and ECG monitor (80). A human viewable display (70) selectively displays the image representations for assessing cardiac function.
摘要:
An apparatus and method for predicting the efficacy of cardioversion as a dality for reverting a patient with atrial fibrillation to normal sinus rhythm. Blood flow through the patient's atrium is measured, converted and processed using nonlinear or chaotic processing to obtain a differential radius signal. The number of excursions of the differential radius beyond a threshold value indicates whether cardioversion will be successful.
摘要:
An apparatus and graphical method for tracking image volume review is provided. An image volume data set is stored in a memory and selected portions of the image volume data set is displayed on a human readable display. A mapping of the displayed portion of the image volume data set is performed relative to a volume completion data set. The volume completion data set with the first portion thereof identified according to the mapping is colorized using a shading function to visually differentiate first portions of the volume completion data set reviewed by a radiologist from remaining portions of the volume completion data set. In that way, a complete review of the image volume can be conducted without missing portions thereof and without redundancy.
摘要:
An apparatus for measuring parameters preparatory to a stent replacement of an aneurytic blood vessel in a patient (26) includes a computed tomography (CT) scanner (10) that acquires image data (28) corresponding to multiple two-dimensional image slices. A reconstruction processor (32) reconstructs a three-dimensional image representation (34) from the image data (28). A tracking processor (40) produces a tracked vessel (92) including at least a centerline (80) and selected vessel boundaries (86). A user interface (44) displays a rendering (242) of the image representation to an associated user (42), measures selected vascular parameters corresponding to the stent parameters (276), and graphically superimposes the measured parameters on the rendering of the image representation (270, 272).