摘要:
A memory tracking circuit activates a reset signal that resets a word-line pulse generator to switch the memory from an access state to a recess state. Activation is based on (i) a signal received at the far end of a tracking row after a propagation delay and (ii) a signal applied to a transistor-based gate delay. If the memory is in a fast PVT condition such that the gate delay is of less duration than, or substantially equal to, the propagation delay, then a slow-down circuit delays activation of the reset signal to allow sufficient access margin. The delay in the latter case is less than that in the former case. If the memory is in a slow PVT condition such that the gate delay is longer than the propagation delay, then the slow-down circuit does not delay activation of the reset signal to prevent excess access margin.
摘要:
A memory tracking circuit activates a reset signal that resets a word-line pulse generator to switch the memory from an access state to a recess state. Activation is based on (i) a signal received at the far end of a tracking row after a propagation delay and (ii) a signal applied to a transistor-based gate delay. If the memory is in a fast PVT condition such that the gate delay is of less duration than, or substantially equal to, the propagation delay, then a slow-down circuit delays activation of the reset signal to allow sufficient access margin. The delay in the latter case is less than that in the former case. If the memory is in a slow PVT condition such that the gate delay is longer than the propagation delay, then the slow-down circuit does not delay activation of the reset signal to prevent excess access margin.
摘要:
A memory tracking circuit controls discharge duration of a tracking bit-line based on (i) a signal received at the far end of a tracking row after a propagation delay and (ii) a signal applied to a transistor-based gate delay. The tracking circuit (i) extends the discharge duration when one or more of (a) the propagation delay and (b) the transistor-based gate delay is shorter than an uncontrolled discharge duration of the tracking bit-line, and (ii) does not extend the discharge duration otherwise. Based on the discharge duration, the tracking circuit activates a reset signal that resets a clock-pulse generator to switch the memory from an access operation to a recess state. Controlling the discharge duration, and consequently the reset signal, based on the propagation delay and the gate delay allows the clock-pulse generator to adjust access times to account for the memory array configuration and process, temperature, and voltage conditions.
摘要:
A memory tracking circuit controls discharge duration of a tracking bit-line based on (i) a signal received at the far end of a tracking row after a propagation delay and (ii) a signal applied to a transistor-based gate delay. The tracking circuit (i) extends the discharge duration when one or more of (a) the propagation delay and (b) the transistor-based gate delay is shorter than an uncontrolled discharge duration of the tracking bit-line, and (ii) does not extend the discharge duration otherwise. Based on the discharge duration, the tracking circuit activates a reset signal that resets a clock-pulse generator to switch the memory from an access operation to a recess state. Controlling the discharge duration, and consequently the reset signal, based on the propagation delay and the gate delay allows the clock-pulse generator to adjust access times to account for the memory array configuration and process, temperature, and voltage conditions.
摘要:
A memory device comprises a memory block, a power gating transistor, and control circuitry. The memory block includes at least one memory cell comprising a storage element electrically connected to a source potential line, a drive strength of the storage element being a function of a voltage level on the source potential line. The power gating transistor, in turn, is connected between the source potential line and a voltage source. The control circuitry is operative to configure the power gating transistor to electrically connect the source potential line to the voltage source while the memory block is in a first mode, and to clamp the source potential line at a voltage different from that of the voltage source when the memory block is in a second mode.
摘要:
A memory device comprises a memory block, a power gating transistor, and control circuitry. The memory block includes at least one memory cell comprising a storage element electrically connected to a source potential line, a drive strength of the storage element being a function of a voltage level on the source potential line. The power gating transistor, in turn, is connected between the source potential line and a voltage source. The control circuitry is operative to configure the power gating transistor to electrically connect the source potential line to the voltage source while the memory block is in a first mode, and to clamp the source potential line at a voltage different from that of the voltage source when the memory block is in a second mode.