摘要:
A microprocessor architecture that includes capabilities for locking individual entries into its integrated instruction cache and data cache while leaving the remainder of the cache unlocked and available for use in capturing the microprocessor's dynamic locality of reference. The microprocessor also includes the capability for locking instruction cache entries without requiring that the instructions be executed during the locking process.
摘要:
A microprocessor partially decodes instructions retrieved from main memory before placing them into the microprocessor's integrated instruction cache. Each storage location in the instruction cache includes two slots for decoded instructions. One slot controls one of the microprocessor's integer pipelines and a port to the microprocessor's data cache. A second slot controls the second integer pipeline or one of the microprocessor's floating point units. The instructions retrieved from main memory are decoded by a loader unit which decodes the instructions from the compact form as stored in main memory and places them into the two slots of the instruction cache entry according to their functions. In addition, auxiliary information is placed in the cache entry along with the instruction to control parallel execution as well as emulation of complex instructions. A bit in each instruction cache entry indicates whether the instructions in the two slots are independent, so that they can be executed in parallel, or dependent, so that they must be executed sequentially. Using a single bit for this purpose allows two dependent instructions to be stored in the slots of the single cache entry.
摘要:
An address translator and a method for translating a linear address into a physical address for memory management in a computer is described herein. Different memory sizes, and different page sizes can be selected. The address translator can translate from a standard 32-bit linear address for compatibility with previous 32-bit architectures, and can also translate to a physical memory size with a larger physical address than linear address; i.e., greater than 32 bits (e.g. 36 bits and up), with no increase in access time. The address translator translates a linear address that includes an offset and a plurality of fields used to select entries in a plurality of tables. The format of the linear address into fields is dependent upon the selected memory size and the selected page size. For a large memory size, the tables include a directory pointer table that includes a group of directory pointers, a plurality of page table directories each of which includes a group of page directory entries, and a plurality of page tables each of which includes a group of page table entries. The size of the entries in the tables is dependent upon the selected memory size. The contents of the tables are stored in memory, and furthermore the pointer table is stored in both main memory and in dedicated pointer table registers.
摘要:
A multi-level identification apparatus and method for providing at least two types of identification information, including a first type for identifying the origin of a microprocessor and the number of levels of identification information available, and a second type for identifying a family, a model, a stepping ID, and features of a microprocessor. The apparatus includes a first memory element for storing an indicia string that identifies the origin of the microprocessor. The apparatus also includes a second memory element for storing other microprocessor ID data including data fields for specifically identifying the microprocessor. The apparatus includes control logic for executing an ID instruction that reads the indicia string or the microprocessor ID data, dependent upon a preselected type. Whichever identification information is read, it is stored in one or more general purpose registers for selective reading by a programmer. The method is available at any time while the microprocessor is operating.
摘要:
An apparatus and method for improving the performance of pipelined computer processors which have segment bits for specifying the operand size, the address size for memory reference, and the stack size, and which can run self-modifying code. The processor predicts segment bits based on previously used segment bits. Actual segment bits are later determined during execution of an instruction. The predicted segment bits are compared with the actual segment bits, and the pipeline is flushed if they do not match. Also, an instruction verification method is provided to determine if self-modifying code has modified instructions already in the pipeline. Upon execution of a write instruction, each instruction address in the pipeline is compared with the write address. If a match is found, the pipeline is flushed.
摘要:
A microprocessor partially decodes instructions retrieved from main memory before placing them into the microprocessor's integrated instruction cache. Each storage location in the instruction cache includes two slots for decoded instructions. One slot controls one of the microprocessor's integer pipelines and a port to the microprocessor's data cache. A second slot controls the second integer pipeline or one of the microprocessor's floating point units. The instructions retrieved from main memory are decoded by a loader unit which decodes the instructions from the compact form as stored in main memory and places them into the two slots of the instruction cache entry according to their functions. In addition, auxiliary information is placed in the cache entry along with the instruction to control parallel execution as well as emulation of complex instructions. A bit in each instruction cache entry indicates whether the instructions in the two slots are independent, so that they can be executed in parallel, or dependent, so that they must be executed sequentially. Using a single bit for this purpose allows two dependent instructions to be stored in the slots of the single cache entry.
摘要:
A computer system includes a dual instruction decoder which issues two instructions in parallel within a single clock cycle if their are no register dependencies between the instructions, and instructions fall within a predetermined subset of the complete instruction set. The system includes first and second instruction pipelines. The first pipeline executes any instruction issued from the full instruction set, while the second pipeline only executes a predetermined subset of instructions selected based on principles of locality. A register dependency checker determines whether the destination register of a first instruction is used during the execution of a second instruction in an instruction sequence. When both instructions are within the subset and there are no dependencies, the first and second instructions can be issued in parallel in the first and second pipelines.
摘要:
A method for monitoring the sequence of instructions executed by a central processing unit. When a branch instruction is executed, the central processing unit generates a representative interface signal. When a jump instruction is executed or an exception occurs, the central processing unit displays representative information on the external memory interface.
摘要:
A method for detecting and handling memory-mapped I/O in a pipelined data processing system is provided. The method uses two signals on the system interface: when the system generates a read bus cycle, it activates an output signal if certain I/O requirements are not satisfied; an input signal is activated when the reference is to a peripheral device that exhibits certain characteristics; when the system detects that both the input signal and the output signal are active, it discards the data read during the bus cycle, serializes instruction execution and regenerates the read bus cycle, this time satisfying the requirements for I/O such that the output signal is driven inactive.
摘要:
An address translator and a method for translating a linear address into a physical address for memory management in a computer is described herein. Different memory sizes, and different page sizes can be selected. The address translator can translate from a standard 32-bit linear address for compatibility with previous 32-bit architectures, and can also translate to a physical memory size with a larger physical address than linear address; i.e., greater than 32 bits (e.g. 36 bits and up), with no increase in access time. The address translator translates a linear address that includes an offset and a plurality of fields used to select entries in a plurality of tables. The format of the linear address into fields is dependent upon the selected memory size and the selected page size. For a large memory size, the tables include a directory pointer table that includes a group of directory pointers, a plurality of page table directories each of which includes a group of page directory entries, and a plurality of page tables each of which includes a group of page table entries. The size of the entries in the tables is dependent upon the selected memory size. The contents of the tables are stored in memory, and furthermore the pointer table is stored in both main memory and in dedicated pointer table registers.