Abstract:
An air spring assembly which includes a main air chamber and an interconnected auxiliary air chamber in which there is disposed a piston movable endwise thereof upon actuation of a reversible electric motor to increase or to decrease the volume of the auxiliary air chamber that is open to the main air chamber, thereby adjusting the effective volume of the main air chamber and thus its spring constant.
Abstract:
An improved automatic lateral guidance control system for guiding moving vehicles is provided which includes a sensing subsystem for viewing an area in front of a vehicle, a plurality of energy radiating or energy reflective devices disposed adjacent a predetermined length of road, an apparatus for translating the radiated or reflected information from the viewed area into coordinate data representing an approximation of the predetermined path along the road, and a vehicle controller for determining the vehicle's heading with respect to the approximated path and providing an output control signal to correct the vehicle's heading with respect to the approximated path.
Abstract:
An improved estimator is provided for road/tire friction. The friction estimator provides near-real-time friction estimation, even while the car is accelerating, braking or turning. It is desirable to have an instantaneous and continuous estimate of the road/tire friction, but an estimate that occurs over several wheel rotations is more realistic. The estimate relies on easily measured signals such as yaw rate, lateral acceleration, wheel speed, etc. The estimate can be used to give the driver or a closed-loop controller an advanced warning when the tire force limit is being approached.
Abstract:
A vibration-damped machine and method including beam being capable of gross movements in space relative to a stationary frame, means including a motor for causing the beam's gross movements; the gross movements tending to induce vibration into the beam, sensors for providing a signal representative of the induced beam vibration, an linear-acting inertial actuator mounted to the beam, and control means for receiving the signal and generating an output signal to actively drive the linear-acting inertial actuator at the appropriate phase, frequency and magnitude to damp induced beam vibrations. Embodiments of the vibration-damped machine are illustrated for a gantry robot, a horizontal machining center, an adhesive dispenser and a pivoting robot. The linear-acting inertial actuator is preferably controlled according to an inertial damping control method where the actuator is forced to behave as a damper attached to ground.
Abstract:
An acoustical tonometer having an ocular chamber in which a target eye is positionable, a drive chamber containing an acoustical generator and an inertia tube connecting the two chambers. Sound waves produced in the drive chamber are used to excite the target eye. The behavior of the eye on the resonant response of the system is used to determine the health of the eye.
Abstract:
A non-active regenerative system (20) which regenerates energy by taking energy from relative motion of members (22) and (24) and using it later to accomplish overall improved performance and eliminates the need for an active source to provide assisting forces. The non-active regenerative system (20) includes an energy transformer element (26) interconnecting a first member (22) and second member (24) which converts relative motion to an energy in storable form, and an energy management element (30) which channels the flow of energy to and from an energy storage element (32) to produce assisting forces. The energy management element (30)is commanded by a controller (36) which is responsive sensors (34a, 34b, 34c, and 34d) which provide signals indicative of the system condition. Power is supplied to the energy management (30), sensors (34a, 34b, 34c, and 34d), and controller (36), only if required, by power source (40). However, no active power source is needed to drive the transformer element (26). Embodiments of the non-active regenerative system (20) include non-active actuators and controllable mounts. Further, pulse width modulation of the energy management element (30) may be provided to reduce the system losses associated with tracking a desired force as dictated by a control algorithm.
Abstract:
A four-wheel drive torque transfer mechanism splits torque from the transmission gearing section of a vehicle into a front-wheel torque and a rear-wheel torque, transmitting the front-wheel torque to the front-wheel drive shafts and the rear-wheel torque to the rear-wheel drive shafts. A central differential connected to the transmission gearing section distributes the torque from the transmission gearing section. A central differential limiting mechanism, provided between the input and output sides of the central differential, limits the rotary differential operation of the differential arrangement responsive to a control torque signal. Control gain values representing optimized turning characteristics are calculated for each of the turning conditions of the vehicle and stored in a memory. A controller for controlling the differential limiting mechanism reads the control gain values from the memory and calculates the products of detected turning conditions and the control gain values corresponding thereto. The controller further calculates the sum of the products and generates the control torque signal in accordance with that calculated sum.
Abstract:
A fluid mount with the capability of actively controlling the amount of vibrational energy transmitted thereacross. An actuator is provided in series or in parallel with the inertia track passageway of a double pumper isolation mount to permit the dynamic stiffness of the mount to be varied so as to control the amount of vibrational energy transmitted in a desired manner. A control system for permitting frequency-shaped force feedback control of the device is also disclosed. Utilization of the device as a tuned absorber is also described.
Abstract:
In a preferred embodiment, the present invention relates to automatic vehicle control systems for controlling individual wheel torque and steering angle. Control is provided in response to desired forward velocity, desired steering angle, actual angular velocities of each controlled wheel, actual vehicle yaw rate, and actual vehicle lateral acceleration. A command processor uses desired forward speed, desired steering angle, and lateral acceleration to compute command angular velocities for each drive wheel and the commanded vehicle yaw rate. Further, the command signal processor monitors a tire adhesion limit. If this limit is exceeded, command signal will be reduced.
Abstract:
The compliance of human tissue is determined by impinging a target area with acoustical energy over a range of frequencies. The target is dynamically sealed within a chamber and the pressure response produced in the chamber over the frequency range is measured. The characteristic of the frequency response is related directly to the compliance of the target.