Abstract:
A pusher for a match plate of a test handler is disclosed which assists a tester to test the produced semiconductor devices. The pusher includes: a body part installed to an installation plate; and a pushing part that extends forward from a front side of the body part, for pushing a semiconductor device placed on an insert of a test tray. The pusher forms: an air through hole that extends through from a rear side of the body part to the front side of the pushing part, for guiding air of a certain temperature, supplied to the rear side of the body part from a duct, to be supplied to the semiconductor device; and at least one or more air outflow holes that extend through from at least one side of the pushing part and communicate with the air through hole, for allowing part of the air supplied from the duct through the air through hole to flow out to a test site. The pusher can reduce the temperature deviation of semiconductor devices at the test site.
Abstract:
Disclosed herein is a linear compressor. In the present invention, a spring sheet is equipped in an exhale cover to prevent an edge and an outer circumference of an exhale spring from touching with the exhale cover. A surface of the spring sheet is treated with a metal of the high hardness, thereby protecting against its abrasion and transformation, caused by a repetitive load from the exhale spring. Furthermore, the durability is improved by enduring the excessive or local load from the exhale spring.
Abstract:
A reciprocating compressor includes a closed container having a suction tube and a discharge tube, and a reference frame elastically supported and mounted in the closed container. A driving motor is mounted at one end of the reference frame for generating a linear reciprocating driving force. A front frame is coupled to the other end of the reference frame which has a cylinder insertion hole therein. A cylinder is inserted into the cylinder insertion hole, and a piston is inserted in the cylinder. A connection magnet holder penetrates the reference frame, and an engaging portion engages the connection magnet holder and the piston. A discharge valve assembly is coupled to cover a compression space formed inside the cylinder and discharging gas, and a spring surrounds and is spaced from the piston for elastically supporting a motion of the piston. The operation mechanism is stable without any driving imbalance.
Abstract:
The present invention features a high-capacity anode material for rapidly chargeable and dischargeable lithium secondary batteries, which is composed of Li4Ti5O12 nanoparticles. The Li4Ti5O12 nanoparticles of the present invention exhibit excellent crystallinity and high rate capability compared to those synthesized using a conventional polyol process or solid reaction process by converting Li4Ti5O12, which is a zero-strain insert material spotlighted as an anode active material for lithium secondary batteries, into Li4Ti5O12, having a high crystalline nanostructure using a solvothermal synthesis process without performing additional heat treatment. The present invention also features methods of, and a method of preparing the high-capacity anode materials described herein.
Abstract translation:本发明的特征在于用于快速充电和放电的锂二次电池的高容量负极材料,其由Li 4 Ti 5 O 12纳米颗粒组成。 本发明的Li 4 Ti 5 O 12纳米颗粒与使用常规多元醇工艺或固体反应方法合成的Li4Ti5O12纳米颗粒相比,其表现出优异的结晶度和高的速率能力,该Li4Ti5O12是作为锂二次电池的负极活性材料聚焦的零应变插入材料, 进入具有高结晶纳米结构的Li 4 Ti 5 O 12中,使用溶剂热合成方法,而不进行额外的热处理。 本发明还涉及制备本文所述的大容量阳极材料的方法和方法。
Abstract:
is the present invention features a high-capacity anode material for rapidly chargeable and dischargeable lithium secondary batteries, which is composed of Li4Ti5O12 nanoparticles. The Li4Ti5O12 nanoparticles of the present invention exhibit excellent crystallinity and high rate capability compared to those synthesized using a conventional polyol process or solid reaction process by converting Li4Ti5O12, which is a zero-strain insert material spotlighted as an anode active material for lithium secondary batteries, into Li4Ti5O12, having a high crystalline nanostructure using a solvothermal synthesis process without performing additional heat treatment. The present invention also features methods of , and a method of preparing the high-capacity anode materials described herein.
Abstract translation:本发明的特征在于用于快速充电和放电的锂二次电池的高容量负极材料,其由Li 4 Ti 5 O 12纳米颗粒组成。 本发明的Li 4 Ti 5 O 12纳米粒子与使用常规的多元醇法或固相反应法合成的Li4Ti5O12纳米粒子相比,显示出优异的结晶性和高的倍率性能,其中Li 4 Ti 5 O 12是作为锂二次电池的负极活性物质聚焦的零应变插入材料, 进入具有高结晶纳米结构的Li 4 Ti 5 O 12中,使用溶剂热合成方法,而不进行额外的热处理。 本发明还涉及制备本文所述的大容量阳极材料的方法和方法。
Abstract:
A test handler includes a loading unit for loading semiconductor devices from customer trays onto a test tray; a test chamber for performing a test for the semiconductor devices loaded on the test tray; a pushing unit having at least one pushing member for pushing the test tray located in the test chamber to be tested, and a press unit for operating the pushing member; a position control unit for adjusting a position of the pushing member to compensate a deviation between the pushing member and the test tray due to a thermal expansion or contraction of any one of the pushing member and the test tray; and an unloading unit for unloading the semiconductor devices loaded on the test tray onto the customer trays after a test for the semiconductor devices is completed.
Abstract:
Disclosed herein is an electrode material obtained using a polyol process and a synthesis method thereof. The synthesis method includes the steps of preparing a mixed solution by mixing a transition metal compound, a polyacid anionic compound and a lithium compound with a polyol solvent; and obtaining a resultant product by reacting the mixed solution in a heating apparatus. In conventional methods of synthesizing an electrode material, such as the sol-gel method and the solid reaction method, the electrode material is synthesized through a heat treatment process, which is a post-process. However, in the method of synthesizing an electrode material according to the present invention, there is an advantage in that the electrode material, which has crystallinity due to a structure such as an olivine structure or a nasicon structure, can be synthesized using a polyol process at a low temperature without performing a heat treatment process, which is a post-process. Moreover, there are advantages in that the nanoelectrode material synthesized by the method according to the present invention has a high crystallinity, uniform particles, and a structure having a diameter ranging from several nanometers to several micrometers. Further, according to the present invention, the electrode material has a high electrochemical stability such that the discharge capacity of the electrode material is not greatly decreased even though the initial discharge capacity thereof is high and it is charged and discharged many times.
Abstract:
A clamping apparatus for clamping a plurality of Hi-Fix boards arranged in a row, includes at least one rotational clamping unit installed to clamp facing end sides of the two or more Hi-Fix boards together, and a plurality of clamping units installed to clamp end sides of the Hi-Fix boards other than the facing sides thereof. The rotational clamping unit includes a clamper installed to rotate about a fixed rotation point to clamp or release the claming of the facing end sides of the two or more Hi-Fix boards, and a driving unit for providing a rotational force to the clamper.
Abstract:
A TAB tape for a semiconductor package is provided. The TAB tape provides number of test pad configuration for reducing the area of the test pad area on a TAB tape to increases the number of packages that may be prepared from a length of TAB tape. The TAB tape comprises a base film having a chip mounting area for mounting at least one semiconductor device and a wiring pattern formed on the base film with test pads formed at the ends of the output terminal patterns. A predetermined number of the test pads are arranged in rows form a group wherein the number of rows is less than the number of test pads in the group. Groups of the test pads are consecutively arranged across the TAB tape to provide the number of test pads necessary for testing the semiconductor device(s).
Abstract:
An electrode material obtained using a polyol process and a synthesis method is provided. The synthesis method includes steps of preparing a mixed solution by mixing a transition metal compound, a polyacid anionic compound and a lithium compound with a polyol solvent; and obtaining a resultant product by reacting the mixed solution in a heating apparatus. There is an advantage in that the electrode material, which has crystallinity due to a structure such as an olivine structure or a nasicon structure, can be synthesized using a polyol process at a low temperature without performing a heat treatment proces. The nanoelectrode material synthesized by the method has a high crystallinity, uniform particles, and a structure having a diameter ranging from several nanometers to several micrometers. Further, the electrode material has a high electrochemical stability.