摘要:
Disclosed is a lithium secondary battery comprising a cathode (C), an anode (A), a separator and an electrolyte, wherein the battery has a weight ratio (A/C) of anode active material (A) to cathode active material (C) per unit area of each electrode of between 0.44 and 0.70, and shows a charge cut-off voltage of between 4.35V and 4.6V. The high-voltage lithium secondary battery satisfies capacity balance by controlling the weight ratio (A/C) of anode active material (A) to cathode active material (C) per unit area of each electrode. Therefore, it is possible to significantly increase the available capacity and average discharge voltage of a battery using a lithium/cobalt-based cathode active material, which shows an available capacity of about 50% in a conventional 4.2V-battery. Additionally, it is possible to significantly improve battery safety under overcharge conditions, and thus to provide a high-voltage and high-capacity lithium secondary battery having excellent safety and long service life.
摘要:
Disclosed is a lithium secondary battery comprising a cathode (C), an anode (A), a separator and an electrolyte, wherein the electrolyte comprises: (a) a nitrile group-containing compound and (b) a compound having a reaction potential of 4.7V or higher. The lithium secondary battery can prevent the problems caused by a nitrile group-containing compound added to the electrolyte for the purpose of improving high-temperature cycle characteristics and safety (such problems as a battery swelling phenomenon and a drop in recovery capacity under high-temperature (>80° C.) storage conditions), by adding a fluorotoluene compound.
摘要:
Provided are embodiments of an optical sheet and a backlight assembly having the optical sheet. The optical sheet can include a body, a plurality of protrusions, and a plurality of embossed portions. The body can form a substrate. One surface of the body can be provided in a planar shape, and the other surface of the body can include the plurality of protrusions, where the protrusions have a triangular shaped cross-section. Each of the protrusions can be configured with the plurality of embossed, which may be formed by a microlens pattern.
摘要:
A mobile communication terminal including a display unit configured to display information, and a controller configured to allocate at least first and second specified display regions on the display unit and to display at least first and second menu items in a combined form with respective multimedia images on the at least first and second specified display regions, respectively.
摘要:
A vertical group III-nitride light emitting device and a manufacturing method thereof are provided. The light emitting device comprises: a conductive substrate; a p-type clad layer stacked on the conductive substrate; an active layer stacked on the p-type clad layer; an n-doped AlxGayIn1-x-yN layer stacked on the active layer; an undoped GaN layer stacked on the n-doped layer; and an n-electrode formed on the undoped GaN layer. The undoped GaN layer has a rough pattern formed on a top surface thereof.
摘要翻译:提供了垂直III族氮化物发光器件及其制造方法。 发光器件包括:导电衬底; 层叠在导电性基板上的p型覆层; 堆叠在p型覆盖层上的有源层; 层叠在有源层上的n掺杂的Al x Ga y In 1 N x N y N n层; 堆叠在n掺杂层上的未掺杂的GaN层; 以及形成在未掺杂的GaN层上的n电极。 未掺杂的GaN层在其顶表面上形成粗糙图案。
摘要:
Disclosed herein is a vertical type nitride semiconductor light emitting diode. The nitride semiconductor light emitting diode comprises an n-type nitride semiconductor layer, an active layer formed under the n-type nitride semiconductor layer, a p-type nitride semiconductor layer formed under the active layer, and an n-side electrode which comprises a bonding pad formed adjacent to an edge of an upper surface of the n-type nitride semiconductor layer and at least one extended electrode formed in a band from the bonding pad. The bonding pad of the n-side electrode is formed adjacent to the edge of the upper surface of the n-type nitride semiconductor layer acting as a light emitting surface, thereby preventing a wire from shielding light emitted from the active layer. The extended electrode can be formed in various shapes, and prevents concentration of current density, thereby ensuring effective distribution of the current density.
摘要:
Provided are a hetero-junction bipolar transistor (HBT) that can increase data processing speed and a method of manufacturing the hetero-junction bipolar transistor. The HBT includes a semi-insulating compound substrate, a sub-collector layer formed on the semi-insulating compound substrate, a pair of collector electrodes disposed at a predetermined distance apart from each other on a predetermined portion of the sub-collector layer, a collector layer and a base layer disposed between the collector electrodes, a pair of base electrodes disposed at a predetermined distance apart from each other on a predetermined portion of the base layer, an emitter layer stack disposed between the base electrodes, and an emitter electrode that is formed on the emitter layer stack, and includes a portion having a line width wider than the line width of the emitter layer stack, wherein both sidewalls of the emitter electrode are respectively aligned with inner walls of the pair of base electrodes, and sidewalls of the collector layer and the base layer are located between outer sidewalls of the pair of base electrodes of the pair of base electrodes.
摘要:
A method of fabricating a vertical structure nitride semiconductor light emitting device having a cross-sectional shape of a polygon having five or more sides or a circle. A light emitting structure is formed on a sapphire substrate. A metal layer having a plurality of patterns is formed on the light emitting structure. The patterns of the metal layer each have a shape corresponding to a cross-sectional shape of a wanted final light emitting device and are spaced apart by a predetermined distance such that an upper surface of the light emitting structure is partially exposed. The light emitting structure is divided into a plurality of individualized light emitting structures by removing the light emitting structure below the exposed region between the patterns of the metal layer. The sapphire substrate is separated from the light emitting structure by irradiating a laser beam.
摘要:
The invention provides a vertical group III-nitride light emitting device improved in external extraction efficiency and a method for manufacturing the same. The method includes forming an undoped GaN layer and an insulating layer on a basic substrate. Then, the insulating layer is selectively etched to form an insulating pattern, and an n-doped AlxGayIn(1-x-y)N layer, an active layer and a p-doped AlmGanIn(1-m-n)N layer are sequentially formed on the insulating pattern. A conductive substrate is formed on the p-doped AlmGanIn(1-m-n)N layer. The basic substrate, the undoped gaN layer and the insulating pattern are removed, and an n-electrode is formed on a part of the exposed surface of the n-doped AlxGayIn(1-x-y)N layer.
摘要翻译:本发明提供一种提高外部提取效率的垂直III族氮化物发光器件及其制造方法。 该方法包括在碱性衬底上形成未掺杂的GaN层和绝缘层。 然后,绝缘层被选择性地蚀刻以形成绝缘图案,并且n掺杂的Al x(1-xy) N层,有源层和p掺杂的Al N n N n层(1-mn)N层依次形成在绝缘层 模式。 导电衬底形成在p掺杂的Al(n-n)N层上。 去除基本衬底,未掺杂的GaN层和绝缘图案,并且在n掺杂的Al x Ga y y y的暴露表面的一部分上形成n电极, (1-xy)N层。
摘要:
The present invention relates to 7-carboxymethyloxy-3′, 4′, 5-trimethoxy flavone.monohydrate which is a non hygroscopic product suitable for the preparation of metered dose of 7-carboxymethyloxy-3′, 4′, 5-trimethoxy flavone having protective activity for gastrointestinal tract including the colon, and a preparation method and uses thereof. 7-carboxymethyloxy-3′, 4′, 5-trimethoxy flavone.monohydrate of the present invention has advantages such as mucus protecting activity for gastrointestinal tract including the colon, convenience for handling and storage under ordinary humidity owing to its non-hygroscopicity, and ability to contain an active compound consistently for the formulation production of a medicine. In addition, the preparation method of 7-carboxymethyloxy-3′, 4′, 5-trimethoxy flavone.monohydrate of the present invention reduces long steps of total synthesis and requires mild conditions for the production of a compound because autoclave condition is not necessary for methylation in this case, and makes mass-production possible without any purification process such as recrystallization or column chromatography.