摘要:
Device selects lines from each I/O device are brought into a PCI host bridge individually so that the device number of a failing device may be logged in an error register when an error is seen on the PCI bus. Until the error register is reset, subsequent load and store operations are delayed until the device number of the subject device may be checked against the error register. If the subject device is a previously failing device, the load/store operation to that device is prevented from completing, either by forcing bad parity or zeroing all byte enables. By forcing bad parity of zero byte enables, the I/O device will respond to the load or store request by activating its device select line, but will not accept store data. Operations to devices which are not logged in the error register are permitted to proceed normally, as are all load store operations when the error register is clear. Normal system operations are thus not impacted, and operations during error recovery are permitted to proceed if no further damage will be caused by such operations.
摘要:
A method and system for deconfiguring a CPU in a processing system is disclosed. In one aspect, a processing system is disclosed that comprises a central processing unit (CPU), and a memory coupled to the CPU. The error status register for capturing information concerning the status of the CPU. The processing system includes a service processor for gathering and analyzing status information from the CPU error register. The processing system also includes a nonvolatile device coupled to the service processor. The nonvolatile device includes a deconfiguration area. The deconfiguration area stores information concerning the status of the CPU from the service processor. The deconfiguration area also provides information for deconfiguring a CPU during a boot time of the processing system. Accordingly, through the present invention, CPU errors are detected during normal computer operations by error detection logic. This detection is utilized during any subsequent boot process by service processor firmware to deallocate the defective CPU. This is accomplished through the use of error status registers within the CPU and through the use of a deconfiguration area in the nonvolatile device which provides information directly to the service processor.
摘要:
A method and apparatus in a multiprocessor data processing system for managing a plurality of processors. Monitoring for recoverable errors in a set of processors is performed. Responsive to detecting a recoverable error for a processor in the set of processors, a determination is made as to whether the recoverable error indicates a trend towards an unrecoverable error. Responsive to a determination that the recoverable error indicates a trend towards an unrecoverable error, actions are initiated to stop the processor.
摘要:
A method and system for deconfiguring software in a processing system is disclosed. In one aspect, a processing system comprises a central processing unit (CPU), and a memory coupled to the CPU. The memory includes a memory array and a memory controller for capturing information concerning the status of the memory array. The processing system includes a service processor for gathering and analyzing status information from the memory controller. The processing system also includes a nonvolatile device coupled to the CPU and the service processor. The nonvolatile device includes a deconfiguration area. The deconfiguration area stores information concerning the status of the memory array from the service processor. The deconfiguration area also provides information for deconfiguring at least a portion of the memory array during a boot time of the processing system. Accordingly, through the present invention, memory errors are detected during normal computer operations by error detection logic. This detection is utilized during any subsequent boot process by service processor and CPU boot firmware to deallocate the defective memory module. This is accomplished through the use of error status registers within the memory controller and through the use of a deconfiguration area in the nonvolatile device which provides information directly to the CPU boot firmware.
摘要:
A method of handling a cache error (such as a parity error), which allows a software recovery, by reporting the error using an unrelated system resource, such as an interrupt service, and particularly a data storage interrupt. The parity error can be reported by generating a data storage interrupt and using the data storage interrupt status register (DSISR) to indicate that the data storage interrupt is a result of the parity error. The context of the processor can be fully synchronized while handling the parity error.
摘要:
An apparatus and method of repairing a processor array for a failure detected at runtime in a system supporting persistent component deallocation are provided. The apparatus and method of the present invention allow redundant array bits to be used for recoverable faults detected in arrays during run time, instead of only at system boot, while still maintaining the dynamic and persistent processor deallocation features of the computing system. With the apparatus and method of the present invention, a failure of a cache array is detected and a determination is made as to whether a repairable failure threshold is exceeded during runtime. If this threshold is exceeded, a determination is made as to whether cache array redundancy may be applied to correct the failure, i.e. a bit error. If so, the cache array redundancy is applied without marking the processor as unavailable. At some time later, the system undergoes a re-initial program load (re-IPL) at which time it is determined whether a second failure of the processor occurs. If a second failure occurs, a determination is made as to whether any status bits are set for arrays other than the cache array that experienced the present failure, if so, the processor is marked unavailable. If not, a determination is made as to whether cache redundancy can be applied to correct the failure. If so, the failure is corrected using the cache redundancy. If not, the processor is marked unavailable.
摘要:
In a memory system comprising a plurality of memory units each of which possesses unit-level error correction capabilities and each of which is tied to a system level error correction function, memory reliability is enhanced by providing a mechanism for disabling the unit-level error correction capability, for example, in response to the occurrence of an uncorrectable error in one of the memory units. This counter-intuitive approach which disables an error correction function nonetheless enhances overall memory system reliability since it enables the employment of the complement/recomplement algorithm which depends upon the presence of reproducible errors for proper operation. Thus, chip level error correction systems, which are increasingly desirable at high packaging densities, are employed in a way which does not interfere with system level error correction methods.
摘要:
A first set of test instructions are provided for a first node in a computer network. A corresponding second set is provided for a second node in the network. The test instruction sets are partitioned into modules. The nodes process their respective sets of test instructions independently to generate test results for each module on each node, except when a synchronizing event occurs. Each node stores its test results for each test module. Since the test modules have an ordered processing sequence, each node's test results for corresponding test modules can be compared asynchronously on an ongoing basis.
摘要:
According to a method form of the invention, in a computer system having a processing load distributed among a number of processors in the system, test computations are performed at intervals by floating point logic of a processor responsive to stored test instructions. Responsive to the test computations indicating an erroneous result by one of the processors information is passed by a firmware process and entered into an operating system error log. Responsive to the information, an operating system deconfiguration service is notified of the error log entry, and the service deconfigures the indicated processor, while the system is still running.
摘要:
A method and system for problem determination and fault isolation in a storage area network (SAN) is provided. A complex configuration of multi-vendor host systems, FC switches, and storage peripherals are connected in a SAN via a communications architecture (CA). A communications architecture element (CAE) is a network-connected device that has successfully registered with a communications architecture manager (CAM) on a host computer via a network service protocol, and the CAM contains problem determination (PD) functionality for the SAN and maintains a SAN PD information table (SPDIT). The CA comprises all network-connected elements capable of communicating information stored in the SPDIT. The CAM uses a SAN topology map and the SPDIT are used to create a SAN diagnostic table (SDT). A failing component in a particular device may generate errors that cause devices along the same network connection path to generate errors. As the CAM receives error packets or error messages, the errors are stored in the SDT, and each error is analyzed by temporally and spatially comparing the error with other errors in the SDT. If a CAE is determined to be a candidate for generating the error, then the CAE is reported for replacement if possible.
摘要翻译:提供了一种用于存储区域网络(SAN)中的问题确定和故障隔离的方法和系统。 多厂商主机系统,FC交换机和存储外设的复杂配置通过通信架构(CA)连接在SAN中。 通信体系结构元件(CAE)是一种网络连接的设备,其已经通过网络服务协议成功地与主计算机上的通信架构管理器(CAM)注册,并且CAM包含用于SAN的问题确定(PD)功能并且维护 SAN PD信息表(SPDIT)。 CA包括能够传送存储在SPDIT中的信息的所有网络连接元件。 CAM使用SAN拓扑图,SPDIT用于创建SAN诊断表(SDT)。 特定设备中的故障组件可能会产生错误,导致沿同一网络连接路径的设备产生错误。 当CAM接收到错误包或错误消息时,将错误存储在SDT中,并通过对错误与SDT中的其他错误进行时间和空间的比较来分析每个错误。 如果确定CAE是生成错误的候选者,则如果可能,报告CAE进行更换。