摘要:
A method of applying optical proximity correction features to a mask having a plurality of features to be imaged. The method includes the steps of defining a set of process parameters to be utilized to image the mask; defining a set of pitch ranges corresponding to pitches exhibited by the plurality of features to be imaged; determining an interference map for at least one of the pitch ranges; and generating a set of rules for positioning scattering bars adjacent the plurality of features based on the interference map, where the set of rules governs scattering bar placement for features having a pitch which falls within the pitch range utilized to generate the interference map.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of generating complementary dark field masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.This method is enabled by a non-transitory computer readable medium configured to store program instructions for execution by a processor. The complementary dark field masks are used for patterning a layer of radiation-sensitive material in a device manufacturing method.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of applying optical proximity correction features to a mask having a plurality of features to be imaged. The method includes the steps of defining a set of process parameters to be utilized to image the mask; defining a set of pitch ranges corresponding to pitches exhibited by the plurality of features to be imaged; determining an interference map for at least one of the pitch ranges; and generating a set of rules for positioning scattering bars adjacent the plurality of features based on the interference map, where the set of rules governs scattering bar placement for features having a pitch which falls within the pitch range utilized to generate the interference map.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
A method of generating a model for simulating the imaging performance of an optical imaging system having a pupil. The method includes the steps of defining the optical imaging system and a process to be utilized by the optical imaging system; and defining a model equation representing the imaging performance of the optical imaging system and the process, where the model equation including a calibrated pupil kernel. The calibrated pupil kernel representing a linear model of the pupil performance.
摘要:
A process of obtaining short-range flare model parameters representing a short-range flare which degrades a contrast of an image generated by a lithography tool, is disclosed. Short-range flare is measured from the image to obtain measured short-range flare data. A simulation is performed based on short-range flare model parameters to obtain simulated short-range flare data. The simulated short-range flare data is compared with the measured short range flare data. It is determined whether the short-range flare model parameters used in the simulation is appropriate based on the comparison result. The short-range flare model parameters is optimized according to the measured short-range data and the simulated short-range flare data if the short-range flare model parameters used for the simulation is not appropriate.