摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
摘要:
The present invention relates to lithographic apparatuses and processes, and more particularly to multiple patterning lithography for printing target patterns beyond the limits of resolution of the lithographic apparatus. Self-aligned assist pattern (SAP) is derived from original design layout in an automated manner using geometric Boolean operations based on some predefined design rules, and are included in the mask layout for efficient self-alignment of various sub-layouts of the target pattern during a multiple patterning lithography process. SAP can be of any shape and size, and can have continuous features (e.g., a ring), or discontinuous (e.g., bars not connected to each other) features. An end-to-end multiple patterning lithography using spacer and SAP may use positive tone lithography, and/or negative tone lithography for line and/or space printing.
摘要:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process. The method includes the steps of: defining an initial H-mask corresponding to the target pattern; defining an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask having a width which is less than a predetermined critical width; identifying vertical critical features in the V-mask having a width which is less than a predetermined critical width; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask. The non-critical features are those features having a width which is greater than or equal to the predetermined critical width. The non-critical features are formed in the H-mask and the V-mask utilizing chrome. The target pattern is then imaged on the substrate by imaging both the H-mask and V-mask.
摘要:
The present invention relates to lithographic apparatuses and processes, and more particularly to multiple patterning lithography for printing target patterns beyond the limits of resolution of the lithographic apparatus. Self-aligned assist pattern (SAP) is derived from original design layout in an automated manner using geometric Boolean operations based on some predefined design rules, and are included in the mask layout for efficient self-alignment of various sub-layouts of the target pattern during a multiple patterning lithography process. SAP can be of any shape and size, and can have continuous features (e.g., a ring), or discontinuous (e.g., bars not connected to each other) features. An end-to-end multiple patterning lithography using spacer and SAP may use positive tone lithography, and/or negative tone lithography for line and/or space printing.
摘要:
A method of generating complementary masks for use in a multiple-exposure lithographic imaging process. The method includes the steps of: identifying a target pattern having a plurality of features comprising horizontal and vertical edges; generating a horizontal mask based on the target pattern; generating a vertical mask based on the target pattern; performing a shielding step in which at least one of the vertical edges of the plurality of features in the target pattern is replaced by a shield in the horizontal mask, and in which at least one of the horizontal edges of the plurality of features in the target pattern is replaced by a shield in the vertical mask, where the shields have a width which is greater that the width of the corresponding feature in the target pattern; performing an assist feature placement step in which sub-resolution assist features are disposed parallel to at least one of the horizontal edges of the plurality of features in the horizontal mask, and are disposed parallel to at least one of the vertical edges of the plurality of features in the vertical mask, and performing a feature biasing step in which at least one of the horizontal edges of the plurality of features in the horizontal mask are adjusted such that the resulting feature accurately reproduces the target pattern, and at least one of the vertical edges of the plurality of features in the vertical mask are adjusted such that the resulting feature accurately reproduces the target pattern.
摘要:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process. The method includes the steps of: defining an initial H-mask corresponding to the target pattern; defining an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask having a width which is less than a predetermined critical width; identifying vertical critical features in the V-mask having a width which is less than a predetermined critical width; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask. The non-critical features are those features having a width which is greater than or equal to the predetermined critical width. The non-critical features are formed in the H-mask and the V-mask utilizing chrome. The target pattern is then imaged on the substrate by imaging both the H-mask and V-mask.
摘要:
Optical proximity effects (OPEs) are a well-known phenomenon in photolithography. OPEs result from the structural interaction between the main feature and neighboring features. It has been determined by the present inventors that such structural interactions not only affect the critical dimension of the main feature at the image plane, but also the process latitude of the main feature. Moreover, it has been determined that the variation of the critical dimension as well as the process latitude of the main feature is a direct consequence of light field interference between the main feature and the neighboring features. Depending on the phase of the field produced by the neighboring features, the main feature critical dimension and process latitude can be improved by constructive light field interference, or degraded by destructive light field interference. The phase of the field produced by the neighboring features is dependent on the pitch as well as the illumination angle. For a given illumination, the forbidden pitch region is the location where the field produced by the neighboring features interferes with the field of the main feature destructively. The present invention provides a method for determining and eliminating the forbidden pitch region for any feature size and illumination condition. Moreover, it provides a method for performing illumination design in order to suppress the forbidden pitch phenomena, and for optimal placement of scattering bar assist features.
摘要:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process is disclosed. The method includes defining an initial H-mask and an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask and vertical critical features in the V-mask; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask.
摘要:
A method of splitting a lithographic pattern into two sub-patterns, includes generating test structures corresponding to structures of interest in the lithographic pattern, varying the test structures through a selected range of dimensions, simulating an image of the test structures, determining an image quality metric for the simulated image, analyzing the determined image quality metric to determine pitch ranges for which split improves the image quality metric and ranges for which split does not improve the image quality metric, and generating the two sub-patterns in accordance with the determined pitch ranges.
摘要:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.