摘要:
Embodiments of the present invention determine skew relative to a plurality of communication paths on a network system. The network is a wavelength division multiplexed optical transport network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
摘要:
Embodiments of the present invention determine skew relative to a plurality of communication paths on a network system. The network is a wavelength division multiplexed optical transport network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
摘要:
Embodiments of the present invention route a WDM signal across multiple communication paths using skew characteristics of at least some of the communication paths. The network is an optical transport network, using either circuit or packet based switching, and wavelength division multiplexed wavelengths and/or optical carrier groups (“OCGs”) over a fiber link to another node in the network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
摘要:
Embodiments of the present invention route a WDM signal across multiple communication paths using skew characteristics of at least some of the communication paths. The network is an optical transport network, using either circuit or packet based switching, and wavelength division multiplexed wavelengths and/or optical carrier groups (“OCGs”) over a fiber link to another node in the network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
摘要:
A method includes receiving client data; extracting overhead data from the client data; mapping the client data into one or more frames, where each of the one or more frames has a frame payload section and a frame overhead section, where the client data is mapped into the frame payload section of the one or more frames; inserting the overhead data into the frame overhead section of the one or more frames; transporting the one or more frames across a network; extracting the overhead data from the frame overhead section of the one or more frames; recovering the client data from the one or more frames; inserting the extracted overhead data into the recovered client data to create modified client data; and outputting the modified client data.
摘要:
A method includes receiving client data; extracting overhead data from the client data; mapping the client data into one or more frames, where each of the one or more frames has a frame payload section and a frame overhead section, where the client data is mapped into the frame payload section of the one or more frames; inserting the overhead data into the frame overhead section of the one or more frames; transporting the one or more frames across a network; extracting the overhead data from the frame overhead section of the one or more frames; recovering the client data from the one or more frames; inserting the extracted overhead data into the recovered client data to create modified client data; and outputting the modified client data.
摘要:
A method, performed in a network that includes a group of nodes, includes identifying a path through a set of the nodes, where each node, in the set of nodes, has a data plane and a control plane; establishing a control plane tunnel, associated with the path, within the control plane of the nodes in the set of nodes; establishing a data plane tunnel, associated with the path, within the data plane of the nodes in the set of nodes, where the data plane tunnel is associated with the control plane tunnel and established through the same set of nodes; and transmitting a control message through the control plane tunnel to change a state of the data plane tunnel.
摘要:
A system and method for automatically generating a topology of a network having synchronous optical network (SONET) switches. Switches in the network pass information about itself to other switches in the network so that every switch can maintain a topology of the network. Using this knowledge of the network topology, each switch can generate a communication route within the network and automatically allot bandwidth for the route. Each switch may generate a new route in response to a line failure.
摘要:
A method for receiving, by circuitry of an optical node adapted for wavelength multiplexing and wavelength switching, a signal over OSC comprising overhead information indicative of status of at least one of an optical layer in an OTN; wherein the signal utilizes OC-N frame format comprising a first STS frame, a second STS frame, and a third STS frame, the STS frames having a format wherein the information is assigned to a number of bits designated for OAM information, wherein the bits are assigned to bytes within a transport overhead portion of the STS frame format within the OC-N frame format; terminating, by circuitry of the optical node, the signal at the optical node; and notifying, by circuitry of the optical node, software of the status of the optical layer in the OTN.
摘要:
A method for receiving, by circuitry of an optical node adapted for wavelength multiplexing and wavelength switching, a signal over OSC comprising overhead information indicative of status of at least one of an optical layer in an OTN; wherein the signal utilizes OC-N frame format comprising a first STS frame, a second STS frame, and a third STS frame, the STS frames having a format wherein the information is assigned to a number of bits designated for OAM information, wherein the bits are assigned to bytes within a transport overhead portion of the STS frame format within the OC-N frame format; terminating, by circuitry of the optical node, the signal at the optical node; and notifying, by circuitry of the optical node, software of the status of the optical layer in the OTN.