摘要:
A method, performed in a network that includes a group of nodes, includes identifying a path through a set of the nodes, where each node, in the set of nodes, has a data plane and a control plane; establishing a control plane tunnel, associated with the path, within the control plane of the nodes in the set of nodes; establishing a data plane tunnel, associated with the path, within the data plane of the nodes in the set of nodes, where the data plane tunnel is associated with the control plane tunnel and established through the same set of nodes; and transmitting a control message through the control plane tunnel to change a state of the data plane tunnel.
摘要:
Consistent with the present disclosure, a communication system is provided in which client data is received and provided in frames for transmission within the system. The frames include an overhead portion as well as locations that include the client data. The frames further include phase data or “virtual justifications” that periodically correct the difference between the phase represented by the data locations in the wrapper and the actual accumulated client phase. The phase data or virtual justifications, however, are decoupled from the data path. Therefore, without complicating the data path, the phase data may be sent more frequently and with finer granularity than the actual justifications. Virtual justifications or phase data are communicated via a “virtual justification control channel” which may part of the frame overhead. Moreover, there is no need for an actual “virtual justification opportunity” in the frame, because no data is actually sent in conjunction with the virtual justifications.
摘要:
A propagation delay in the transmission of a frame from an initiator node to a peer node is determined by initially identifying a frame number and byte offset of a first incoming frame from the peer node at a time when the initiator node outputs a portion of a transmitted frame. The portion of the transmitted frame may be the first byte of a sub-frame within the transmitted frame. At the peer node, the frame number and byte offset of a second frame to be supplied to the initiator node is identified at a later time when the frame portion transmitted by the initiator node is received by the peer node, and such information is transmitted to the initiator node. Thus, since the frames output and received by the initiator node are typically of fixed duration, the frame number and byte offset of the incoming frame represent the time when the initiator node outputs the frame portion (a transmit time). In addition, the frame number and byte offset of the second frame represents the time at which the frame portion is received by the peer node (a receive time). Accordingly, by comparing the frame numbers and byte offsets of the first and second frames received from the peer node, a difference between transmit and receive times or propagation delay can be obtained.
摘要:
Consistent with the present disclosure, a communication system is provided in which client data is received and provided in frames for transmission within the system. The frames include an overhead portion as well as locations that include the client data. The frames further include phase data or “virtual justifications” that periodically correct the difference between the phase represented by the data locations in the wrapper and the actual accumulated client phase. The phase data or virtual justifications, however, are decoupled from the data path. Therefore, without complicating the data path, the phase data may be sent more frequently and with finer granularity than the actual justifications. Virtual justifications or phase data are communicated via a “virtual justification control channel” which may part of the frame overhead. Moreover, there is no need for an actual “virtual justification opportunity” in the frame, because no data is actually sent in conjunction with the virtual justifications.
摘要:
A client receive circuit receives client data from a network, decodes the client data and stores the client data within the memory. A frame transmit circuit is provided that includes a justification control logic and a framer and a justification control logic is provided that 1) determines each of a plurality of fill levels and 2) determines an average of the plurality of fill levels. The framer has circuitry to generate a wrapper including a justification opportunity having data based upon a difference between the average and a predetermined threshold.
摘要:
A propagation delay in the transmission of a frame from an initiator node to a peer node is determined by initially identifying a frame number and byte offset of a first incoming frame from the peer node at a time when the initiator node outputs a portion of a transmitted frame. The portion of the transmitted frame may be the first byte of a sub-frame within the transmitted frame. At the peer node, the frame number and byte offset of a second frame to be supplied to the initiator node is identified at a later time when the frame portion transmitted by the initiator node is received by the peer node, and such information is transmitted to the initiator node. Thus, since the frames output and received by the initiator node are typically of fixed duration, the frame number and byte offset of the incoming frame represent the time when the initiator node outputs the frame portion (a transmit time). In addition, the frame number and byte offset of the second frame represents the time at which the frame portion is received by the peer node (a receive time). Accordingly, by comparing the frame numbers and byte offsets of the first and second frames received from the peer node, a difference between transmit and receive times or propagation delay can be obtained.
摘要:
A line card in a network node having a local memory coupled to a local controller and local logic circuit. The local memory in the line card stores state information for signals processed by the line card itself, as well as state information for signals processed by other line cards. The logic circuit and controller implement a same fault detection and signal processing algorithms as all other line cards in the group, to essentially effectuate a distributed and local hardware based control of automatic protection switching (APS) without interrupting a central processor. The line card also performs error checking and supervisory functions to ensure consistency of state among the line cards.
摘要:
A method includes receiving client data; extracting overhead data from the client data; mapping the client data into one or more frames, where each of the one or more frames has a frame payload section and a frame overhead section, where the client data is mapped into the frame payload section of the one or more frames; inserting the overhead data into the frame overhead section of the one or more frames; transporting the one or more frames across a network; extracting the overhead data from the frame overhead section of the one or more frames; recovering the client data from the one or more frames; inserting the extracted overhead data into the recovered client data to create modified client data; and outputting the modified client data.
摘要:
A method for receiving, by circuitry of an optical node adapted for wavelength multiplexing and wavelength switching, a signal over OSC comprising overhead information indicative of status of at least one of an optical layer in an OTN; wherein the signal utilizes OC-N frame format comprising a first STS frame, a second STS frame, and a third STS frame, the STS frames having a format wherein the information is assigned to a number of bits designated for OAM information, wherein the bits are assigned to bytes within a transport overhead portion of the STS frame format within the OC-N frame format; terminating, by circuitry of the optical node, the signal at the optical node; and notifying, by circuitry of the optical node, software of the status of the optical layer in the OTN.
摘要:
The present invention provides a system, apparatus and method for modularly adapting a network node architecture to function in one of a plurality of potential node types. The architecture includes a configurable switching element, integrated optics, and a plurality of modules that allow a “type” of node to be adapted and configured within the base architecture. The module interfaces may be optical or electrical and be used to construct various different types of nodes including regenerators, add/drop nodes, terminal nodes, and multi-way nodes using the same base architecture.