Abstract:
A drive assembly for an electrical switching apparatus racking assembly is provided. The drive assembly includes a positioning assembly, a motor assembly, and a control assembly. The positioning assembly is structured to impart movement to said carriage assembly and to move said carriage assembly from said first position to said second position. The motor assembly is structured to impart movement to said positioning assembly. The control assembly is structured to control said motor assembly. The control assembly is in electronic communication with the motor assembly. The motor assembly is operatively coupled to the positioning assembly.
Abstract:
An improved vent apparatus that is usable with an electrical enclosure includes a vent flap that is movable between a closed position overlying an opening formed in a wall of the electrical enclosure and an open position wherein at least a portion of the vent flap is spaced from the wall. The vent flap may be held in place in the closed position via gravity or through the use of a retainer such as a spring or a frangible structure. The vent flap is a part of a flap apparatus that is formed as a unitary single piece element that may be stamped from sheet metal, for example, and the flap apparatus includes a number of hinge elements that are rollably disposed on an edge of the wall adjacent the opening.
Abstract:
An improved vent apparatus that is usable with an electrical enclosure includes a vent flap that is movable between a closed position overlying an opening formed in a wall of the electrical enclosure and an open position wherein at least a portion of the vent flap is spaced from the wall. The vent flap may be held in place in the closed position via gravity or through the use of a retainer such as a spring or a frangible structure. The vent flap is a part of a flap apparatus that is formed as a unitary single piece element that may be stamped from sheet metal, for example, and the flap apparatus includes a number of hinge elements that are rollably disposed on an edge of the wall adjacent the opening.
Abstract:
A racking assembly for an electrical apparatus is provided. The racking assembly includes a movable carriage assembly and a drive assembly. The movable carriage assembly is sized to fit within a housing assembly and is structured to be moved between a first position and a second position. The carriage assembly is further structured to support at least one electrical component. The drive assembly includes a motor assembly and a positioning assembly. The motor assembly is structured to impart movement to said positioning assembly. The motor assembly is coupled to said positioning assembly. The positioning assembly is structured to impart movement to said carriage assembly and to move said carriage assembly from said first position to said second position. The positioning assembly is coupled to said carriage assembly. In this configuration, the racking assembly is structured to move the carriage assembly, and therefore the electrical apparatus, between the first and second positions.
Abstract:
A racking assembly for an electrical apparatus is provided. The racking assembly includes a movable carriage assembly and a drive assembly. The movable carriage assembly is sized to fit within a housing assembly and is structured to be moved between a first position and a second position. The carriage assembly is further structured to support at least one electrical component. The drive assembly includes a motor assembly and a positioning assembly. The motor assembly is structured to impart movement to said positioning assembly. The motor assembly is coupled to said positioning assembly. The positioning assembly is structured to impart movement to said carriage assembly and to move said carriage assembly from said first position to said second position. The positioning assembly is coupled to said carriage assembly. In this configuration, the racking assembly is structured to move the carriage assembly, and therefore the electrical apparatus, between the first and second positions.
Abstract:
A drive assembly for an electrical switching apparatus racking assembly is provided. The drive assembly includes a positioning assembly, a motor assembly, and a control assembly. The positioning assembly is structured to impart movement to said carriage assembly and to move said carriage assembly from said first position to said second position. The motor assembly is structured to impart movement to said positioning assembly. The control assembly is structured to control said motor assembly. The control assembly is in electronic communication with the motor assembly. The motor assembly is operatively coupled to the positioning assembly.
Abstract:
An improved vent apparatus that is usable with an electrical enclosure includes a vent flap that is movable between a closed position overlying an opening formed in a wall of the electrical enclosure and an open position wherein at least a portion of the vent flap is spaced from the wall. The vent flap may be held in place in the closed position via gravity or through the use of a retainer such as a spring or a frangible structure. The vent flap is a part of a flap apparatus that is formed as a unitary single piece element that may be stamped from sheet metal, for example, and the flap apparatus includes a number of hinge elements that are rollably disposed on an edge of the wall adjacent the opening.
Abstract:
An electrical disconnect includes a housing having a recess defined therein extending from an opening toward a base. The disconnect also includes a vacuum envelope defined within the housing near the base; a fixed contact assembly including a fixed contact structured to be in electrical communication with a voltage source disposed partially within the vacuum envelope; and a movable contact assembly including a movable contact having a first end disposed within the vacuum envelope and a second end disposed in the recess near the base and movable between a closed position in electrical contact with the fixed contact and an open position spaced apart from the fixed contact a separation distance. The housing includes a dynamic shield electrically connected to the movable contact, the dynamic shield being disposed about the recess within the housing and extending from the base toward the opening thereof.
Abstract:
An adjustable wireway assembly for use in an electrical enclosure includes a panel structured to form a portion of the electrical enclosure, the panel having a first aperture defined therein. The assembly further includes a plate member selectively coupled to the panel about a portion of the first aperture in at least one of a first position and a second position in a manner that blocks at least a portion of the first aperture and thereby defines a second aperture formed from a portion of the first aperture. When coupled in the first position, the second aperture is of a first area and when coupled in the second position, the second aperture is of a second area different than the first area.
Abstract:
A racking assembly for an electrical apparatus is provided. The racking assembly includes a movable carriage assembly and a drive assembly. The movable carriage assembly is sized to fit within a housing assembly and is structured to be moved between a first position and a second position. The carriage assembly is further structured to support at least one electrical component. The drive assembly includes a motor assembly and a positioning assembly. The motor assembly is structured to impart movement to said positioning assembly. The motor assembly is coupled to said positioning assembly. The positioning assembly is structured to impart movement to said carriage assembly and to move said carriage assembly from said first position to said second position. The positioning assembly is coupled to said carriage assembly. In this configuration, the racking assembly is structured to move the carriage assembly, and therefore the electrical apparatus, between the first and second positions.