Abstract:
A nozzle for a gaseous fuel injector has a converging portion, a tip connected to the converging portion, and an anti-leakage device disposed at the tip to selectively inhibit leakage of a residual gaseous fuel from the nozzle.
Abstract:
A fuel system for an engine has a cylinder with an inlet air port, an air box surrounding the inlet air port, and a gaseous fuel injector positioned in the air box and having a nozzle located at the inlet air port. The fuel system also has a gaseous fuel control valve, a fuel supply line fluidly extending from the gaseous fuel control valve to the gaseous fuel injector, a purge valve, and a purge fluid supply line fluidly extending from the purge valve to at least one of the fuel supply line and the gaseous fuel injector. The fuel system also has a return valve and a return line fluidly extending from at least one of the fuel supply line and the gaseous fuel injector.
Abstract:
A piston for reduced production of particulate matter during combustion of a fuel directly injected after a top dead center position includes a piston body defining a piston body diameter of about 263 mm, and a combustion face upon the first axial body end. The combustion face includes a combustion bowl, and an annular piston rim extending circumferentially around the combustion bowl. Inner and outer rim surfaces together comprise a horizontal width of the rim in a ratio of about 1:1 to about 2:1. The inner rim surface includes a chamfer sloping from about 9° to about 11°, such that a profile of the rim is relieved to limit deflection by the piston of the directly injected fuel toward a cylinder wall.
Abstract:
An engine system is disclosed. The engine system may have an engine including at least one cylinder. Further, the engine system may have a nozzle configured to selectively inject gaseous fuel into the at least one cylinder of the engine. The engine system may also have an intake port configured to direct air for combustion to the at least one cylinder. In addition, the engine system may have exhaust valves associated with the at least one cylinder. The exhaust valves may be configured to direct exhaust from the cylinder to an atmosphere. The exhaust valves may also be configured to close at different times.
Abstract:
A piston for reduced production of particulate matter during combustion of a fuel directly injected after a top dead center position includes a piston body defining a piston body diameter of about 263 mm, and a combustion face upon the first axial body end. The combustion face includes a combustion bowl, and an annular piston rim extending circumferentially around the combustion bowl. Inner and outer rim surfaces together comprise a horizontal width of the rim in a ratio of about 1:1 to about 2:1. The inner rim surface includes a chamfer sloping from about 9° to about 11°, such that a profile of the rim is relieved to limit deflection by the piston of the directly injected fuel toward a cylinder wall.
Abstract:
A piston for a compression ignition internal combustion engine includes a piston body having an outer cylindrical surface defined along a longitudinal piston axis. A piston includes a combustion face defining a combustion bowl including an inner bowl surface, an inner rim portion and an outer rim portion. The combustion face includes a cross-sectional profile of rotation about the longitudinal piston axis. A first profile of the profile of rotation includes a convex curve segment, a linear segment outboard the convex curve segments and a first set of concave curve segments outboard the linear segment. The first set of concave curve segments defines a first radius of curvature. A second profile is provided outboard the first profile and includes a second set of concave curve segments. The second set of concave curve segments defines a second radius of curvature greater than the first radius of curvature.
Abstract:
A nozzle for a gaseous fuel injector has a converging portion, a tip connected to the converging portion, and an anti-leakage device disposed at the tip to selectively inhibit leakage of a residual gaseous fuel from the nozzle.