NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND CHARGING METHOD

    公开(公告)号:US20200176757A1

    公开(公告)日:2020-06-04

    申请号:US16487307

    申请日:2018-02-22

    Abstract: A non-aqueous electrolyte secondary battery of the present invention includes: a positive electrode in which an olivine-type compound is used as a positive electrode active material; a negative electrode in which amorphous-based carbon is used as a negative electrode active material; a separator sandwiched between the positive electrode and the negative electrode; a non-aqueous electrolyte; and a casing which houses the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte. The positive electrode, the negative electrode, and the non-aqueous electrolyte are configured to satisfy an inequality: (Rn/(Rp+Rn))≤0.54, where Rp is a positive electrode internal resistance attributed to both the positive electrode and a positive electrode reaction during charging of the secondary battery, Rn is a negative electrode internal resistance attributed to both the negative electrode and a negative electrode reaction during charging of the secondary battery, and (Rp+Rn) is an inter-terminal internal resistance of the secondary battery during charging of the secondary battery.

    POWER STORAGE DEVICE, CASING SEALING STRUCTURE, AND CASING MANUFACTURING METHOD

    公开(公告)号:US20180375068A1

    公开(公告)日:2018-12-27

    申请号:US16064005

    申请日:2015-12-28

    Abstract: The present invention provides a power storage device capable of preventing deterioration of sealability even when a pulling force is applied to a casing and having high safety and excellent durability. The power storage device of the present invention includes a casing having a sealing structure, the casing includes a first member including a first opening and a second member, the first and second members are joined to each other at a first joint portion provided at a peripheral edge of the first opening, the first joint portion includes a first peripheral groove portion and a first reception port provided at one of the first and second members, a first convex edge portion provided at the other thereof, a first claw portion provided on a side surface of the first convex edge portion, and a first adhesive layer, a front end of the first convex edge portion is disposed inside the first peripheral groove portion and is bonded to an inner wall of the first peripheral groove portion by the first adhesive layer, the first claw portion is disposed inside the first reception port, and the first adhesive layer bonds the front end of the first convex edge portion to the inner wall of the first peripheral groove portion in a state where a side surface of the first claw portion opposite to the front end of the first convex edge portion is in contact with an inner wall of the first reception port opposite to a bottom of the first peripheral groove portion.

    BATTERY
    4.
    发明申请
    BATTERY 审中-公开

    公开(公告)号:US20180375074A1

    公开(公告)日:2018-12-27

    申请号:US16061983

    申请日:2015-12-16

    Abstract: The present invention is conceived in such a way as to prevent any damage to the battery management unit even if the solution leaks out of the cell, providing the battery with high safety. The battery according to the present invention is characterized by being provided with a cell, a battery management unit for managing the cell, a protection case holding the battery management unit, and a housing containing the cell and the protection case, wherein the protection case inside is hermetically sealed.

    SEALED BATTERY AND ASSEMBLED BATTERY
    5.
    发明申请

    公开(公告)号:US20180090737A1

    公开(公告)日:2018-03-29

    申请号:US15563279

    申请日:2015-03-30

    Abstract: A sealed battery of the present invention includes a power generation element including an electrode sheet and a separator; a laminate film disposed in such a way as to enclose the power generation element therein; an electrode connection terminal connected to the electrode sheet; and an electrolyte. The laminate film is shaped to form a housing section for power generation element, the housing section being hermetically sealed at a fusion bonding section where parts of the laminate film are overlapped and fusion-bonded and at a first sealing section where the electrode connection terminal is sandwiched between and fusion-bonded with parts of the laminate film. The power generation element and the electrolyte are housed in the housing section for power generation element. The electrode connection terminal comprises an external connection section for connecting with external and a conductive section disposed between the external connection section and the first sealing section. The conductive section is covered with the laminate film without bonding.

Patent Agency Ranking