Abstract:
In a method of manufacturing an electrode assembly for a rectangular battery, in which positive electrodes and negative electrodes are alternately laminated so that a separator exists between the respective positive and negative electrodes, the manufacturing method includes the steps of: arranging a plurality of guide members in zigzag form in a perpendicular direction; inserting a continuous member of the separator between one and another one rows of the guide members; folding, into zigzag form, the continuous member by intersecting the rows of the guide members in a horizontal direction; inserting alternately the positive electrodes and the negative electrodes in respective valley grooves of the zigzag-folded continuous member; withdrawing the guide members from the respective valley grooves of the continuous member; and pressing, thereafter, the continuous member in the zigzag direction so as to make flat the continuous member.
Abstract:
The present invention provides a power storage device capable of preventing deterioration of sealability even when a pulling force is applied to a casing and having high safety and excellent durability. The power storage device of the present invention includes a casing having a sealing structure, the casing includes a first member including a first opening and a second member, the first and second members are joined to each other at a first joint portion provided at a peripheral edge of the first opening, the first joint portion includes a first peripheral groove portion and a first reception port provided at one of the first and second members, a first convex edge portion provided at the other thereof, a first claw portion provided on a side surface of the first convex edge portion, and a first adhesive layer, a front end of the first convex edge portion is disposed inside the first peripheral groove portion and is bonded to an inner wall of the first peripheral groove portion by the first adhesive layer, the first claw portion is disposed inside the first reception port, and the first adhesive layer bonds the front end of the first convex edge portion to the inner wall of the first peripheral groove portion in a state where a side surface of the first claw portion opposite to the front end of the first convex edge portion is in contact with an inner wall of the first reception port opposite to a bottom of the first peripheral groove portion.
Abstract:
The occurrence of separation or reaggregation is suppressed in a suspension such as a battery electrode slurry. A battery electrode slurry distributing apparatus includes: a circulation pipe via which a positive electrode slurry is to be circulated; and a control unit that controls the supply of the positive electrode slurry to each of coaters. In a period in which either the coater is allowed to receive the supply of the positive electrode slurry, the control unit inhibits the supply of the positive electrode slurry to the other coater. The circulation pipe is structured in a polygonal loop. The coaters are connected to respective elbow portions formed in the circulation pipe via the pipes, respectively.
Abstract:
A secondary battery manufacturing method enables smooth pulling of a separator by guide members by inhibiting a phenomenon in which, when the separator is being pulled by the guide members, the separator moves in the width direction and rattles. The method includes pulling in a separator by guide bars to zigzag-fold the separator; and suspending the separator between the guide bars via a suspension roller while locating buffer rollers at a predetermined descending position, the buffer rollers being disposed between support rollers for supporting the separator at midpoints upstream, in the transport direction of the separator, of the suspension roller, the buffer rollers being ascendable and descendable in contact with an upper surface of the separator to be adjustable vertically, and allowing the buffer rollers to ascend in accordance with movement of the guide bars, thereby supplying the separator of a length pulled in by the guide bars.
Abstract:
A nonaqueous electrolyte secondary battery structure includes an electrode junction body and an exterior member having a housing chamber housing the electrode junction body, the housing chamber includes no electrolytic solution, and the housing chamber is hermetically sealed, with an interior thereof being in a low humidity state is manufactured by housing the electrode junction body in the housing chamber and then hermetically sealing the housing chamber in a low humidity environment so that the electrode junction body is sealed in the housing chamber without injecting any electrolytic solution into the housing chamber so that the housing chamber includes no electrolytic solution and the housing chamber is hermetically sealed with an interior thereof being in a low humidity state.
Abstract:
The present invention is conceived in such a way as to prevent any damage to the battery management unit even if the solution leaks out of the cell, providing the battery with high safety. The battery according to the present invention is characterized by being provided with a cell, a battery management unit for managing the cell, a protection case holding the battery management unit, and a housing containing the cell and the protection case, wherein the protection case inside is hermetically sealed.