Abstract:
The present disclosure relates to an electric circuit system. The system includes a housing, a printed circuit board mounted within the housing, an electric component conductively mounted to the printed circuit board, and a cooling system for transferring heat away from of the electric component. The printed circuit board is compartmentalizing the inside of the housing into a first compartment and a second compartment, and the electric component is situated in the first compartment. The cooling system includes at least one first heat transferring element located adjacent to the electric component. The at least one first heat transferring element is secured to the housing surrounding the second compartment capable of forming a heat flowing path defined to transfer heat from the electric component to the housing via the at least one first heat transferring element.
Abstract:
An AC-DC converter device includes a first overvoltage protection circuit connected between a first DC output terminal and a first control terminal of a gate pulse controller. The first overvoltage protection circuit is configured to turn off a first switch if the output voltage between the DC output terminals is above a threshold voltage. A galvanic insulation barrier is connected either between the first overvoltage protection circuit and the first control terminal or between the first control terminal and the first switch.
Abstract:
A DC-DC converter device and method for controlling the DC-DC converter device includes controlling gate drivers connected to the respective gate of first and second resonant circuit switches of a resonant circuit, controlling gate drivers connected to the respective gate of first and second rectifier switches of a synchronous rectifier, and detecting whether a shutdown criteria is fulfilled or not. If the shutdown criteria is fulfilled, the method is further includes the step of sending a shutdown signal to a shutdown device.
Abstract:
A power supply system module that includes a first and second AC terminals, positive and negative DC terminals and a housing. An AC-DC converter is connected to the first and second AC terminals, and a DC-DC converter is connected between the AC-DC converter and an internal DC bus. A protection circuit is connected between the internal DC bus and the positive or negative DC terminal. A control device controls the AC-DC converter and/or the DC-DC converter. The AC-DC converter, the DC-DC converter and the control device are provided inside the housing. The power supply system module also includes a backup battery device that has a backup battery connected to the internal DC bus via a battery management system. The backup battery device is provided inside the housing.
Abstract:
The present disclosure relates to a power supply system (1) including a main unit (10) including a protective main housing (11) and a distribution circuit (20) disposed in the protective main housing (11) and a module unit (30) including a protective module housing (31) and a converter module (40) disposed in the protective module housing (31). A protective connection system (CS) is configured to provide a releasable connection between the module unit (30) and the main unit (10); wherein the protective connection system (CS) includes a first connector device (15), a second connector device (35) and a sealing element (53).
Abstract:
The present disclosure relates to a power supply system (1) including a main unit (10) including a protective main housing (11) and a distribution circuit (20) disposed in the protective main housing (11) and a module unit (30) including a protective module housing (31) and a converter module (40) disposed in the protective module housing (31). A protective connection system (CS) is configured to provide a releasable connection between the module unit (30) and the main unit (10); wherein the protective connection system (CS) includes a first connector device (15), a second connector device (35) and a sealing element (53).
Abstract:
A DC-DC converter device and method for controlling the DC-DC converter device includes controlling gate drivers connected to the respective gate of first and second resonant circuit switches of a resonant circuit, controlling gate drivers connected to the respective gate of first and second rectifier switches of a synchronous rectifier, and detecting whether a shutdown criteria is fulfilled or not. If the shutdown criteria is fulfilled, the method is further includes the step of sending a shutdown signal to a shutdown device.
Abstract:
A power supply system module that includes a first and second AC terminals, positive and negative DC terminals and a housing. An AC-DC converter is connected to the first and second AC terminals, and a DC-DC converter is connected between the AC-DC converter and an internal DC bus. A protection circuit is connected between the internal DC bus and the positive or negative DC terminal. A control device controls the AC-DC converter and/or the DC-DC converter. The AC-DC converter, the DC-DC converter and the control device are provided inside the housing. The power supply system module also includes a backup battery device that has a backup battery connected to the internal DC bus via a battery management system. The backup battery device is provided inside the housing.
Abstract:
A common mode inductor device includes a magnetic core forming a continuous loop, a first winding wound around the magnetic core, and a second winding wound around the magnetic core. The magnetic core further includes a first leg section, a second leg section, a third leg section and a fourth leg section. The first winding is wound around the first leg section, the second winding is wound around the second leg section, the third leg section is provided between a first end area of the first leg section and a first end area of the second leg section, and the fourth leg section is provided between a second end area of the first leg section and a second end area of the second leg section.
Abstract:
An AC-DC converter device includes a first overvoltage protection circuit connected between a first DC output terminal and a first control terminal of a gate pulse controller. The first overvoltage protection circuit is configured to turn off a first switch if the output voltage between the DC output terminals is above a threshold voltage. A galvanic insulation barrier is connected either between the first overvoltage protection circuit and the first control terminal or between the first control terminal and the first switch.