Abstract:
An AC-DC converter device includes a first overvoltage protection circuit connected between a first DC output terminal and a first control terminal of a gate pulse controller. The first overvoltage protection circuit is configured to turn off a first switch if the output voltage between the DC output terminals is above a threshold voltage. A galvanic insulation barrier is connected either between the first overvoltage protection circuit and the first control terminal or between the first control terminal and the first switch.
Abstract:
A DC-DC converter device and method for controlling the DC-DC converter device includes controlling gate drivers connected to the respective gate of first and second resonant circuit switches of a resonant circuit, controlling gate drivers connected to the respective gate of first and second rectifier switches of a synchronous rectifier, and detecting whether a shutdown criteria is fulfilled or not. If the shutdown criteria is fulfilled, the method is further includes the step of sending a shutdown signal to a shutdown device.
Abstract:
A power supply system module that includes a first and second AC terminals, positive and negative DC terminals and a housing. An AC-DC converter is connected to the first and second AC terminals, and a DC-DC converter is connected between the AC-DC converter and an internal DC bus. A protection circuit is connected between the internal DC bus and the positive or negative DC terminal. A control device controls the AC-DC converter and/or the DC-DC converter. The AC-DC converter, the DC-DC converter and the control device are provided inside the housing. The power supply system module also includes a backup battery device that has a backup battery connected to the internal DC bus via a battery management system. The backup battery device is provided inside the housing.
Abstract:
An AC-AC converter device includes first and second AC input terminals and first and second AC output terminals. An input device is connected between an input node, a common node, a positive DC terminal and a negative DC terminal, wherein the input node is connected to the first AC input terminal via a first input inductor. An output device is connected between an output node, the positive DC terminal and the negative DC terminal, wherein the output node is connected to the first AC output terminal via an output inductor. A common device is connected between the common node, the positive DC terminal and the negative DC terminal, where the common node is connected to the second AC input terminal via a common inductor. A control device is provided for controlling the switches of the output device and the common device.
Abstract:
The present disclosure relates to a power supply system (1) including a main unit (10) including a protective main housing (11) and a distribution circuit (20) disposed in the protective main housing (11) and a module unit (30) including a protective module housing (31) and a converter module (40) disposed in the protective module housing (31). A protective connection system (CS) is configured to provide a releasable connection between the module unit (30) and the main unit (10); wherein the protective connection system (CS) includes a first connector device (15), a second connector device (35) and a sealing element (53).
Abstract:
The present disclosure provides a common or differential mode inductor for connection to a printed circuit board. The inductor includes a core, a first coil including a first insulated wire wound with a number of turns around the core, and a supporting device for supporting the core and the first coil. The supporting device includes a base element having a PCB contacting surface, and a first alignment element having a proximal end connected to the base element and a distal end provided at a distance from the PCB contacting surface, wherein the distal end is defining an alignment plane. The core has a first end plane facing the alignment plane and a second end plane, wherein the first end plane is facing the alignment plane. The second end plane is facing the base element.
Abstract:
The present disclosure provides to a power converter including an AC input terminal (ACin), a neutral terminal (N), an AC output terminal (ACout), an AC/DC converter circuit (210) connected between the AC input terminal, a positive DC terminal (DCP), and a negative DC terminal (DCN), a DC capacitor (C15) connected between the positive DC terminal (DCP) and the negative DC terminal (DCN), a line frequency commutated neutral circuit (220) connected between the positive DC terminal (DCP), the negative DC terminal (DCN), and the neutral terminal (N), and a DC/AC converter circuit (230) connected between the positive DC terminal (DCP), the negative DC terminal (DCN), the AC output terminal (ACout), and the neutral terminal (N). The power converter further includes an auxiliary converter circuit (240) connected between the positive DC terminal (DCP), the negative DC terminal (DCN), and the neutral terminal (N).
Abstract:
The present disclosure relates to a power supply system (1) including a main unit (10) including a protective main housing (11) and a distribution circuit (20) disposed in the protective main housing (11) and a module unit (30) including a protective module housing (31) and a converter module (40) disposed in the protective module housing (31). A protective connection system (CS) is configured to provide a releasable connection between the module unit (30) and the main unit (10); wherein the protective connection system (CS) includes a first connector device (15), a second connector device (35) and a sealing element (53).
Abstract:
The invention relates to a H-bridge inverter and a method for controlling a H-bridge converter. The H-bridge inverter (1) comprises first and second DC terminals (Tdc1, Tdc2), first and second AC terminals (Tac1, Tac2), a first switch (S1), a second switch (S2), a third switch (S3) and a fourth switch (S4). The inverter further comprises a control circuit for controlling the switching of the first, second, third and fourth switches (S11, S2, S3, S4). The control circuit is configured to control the switches (S1, S2, S3, S4) in continuous mode between the following states: a first state where the first switch (S1) is turned off, the second switch (S2) is performing PWM switching, the third switch (S3) is turned off and the fourth switch (S4) is turned on; a second state where the first switch (S1) is turned off, the second switch (S2) is performing PWM switching, the third switch (S3) is turned on and the fourth switch (S4) is turned off; a third state where the first switch (S1) is turned off, the second switch (S2) is turned on, the third switch (S3) is turned off and the fourth switch (54) is performing PWM switching; and a fourth state where the first switch (S1) is turned on, the second switch (S2) is turned off, the third switch (S3) is turned off and the fourth switch (S4) is performing PWM switching.
Abstract:
A DC-DC converter device and method for controlling the DC-DC converter device includes controlling gate drivers connected to the respective gate of first and second resonant circuit switches of a resonant circuit, controlling gate drivers connected to the respective gate of first and second rectifier switches of a synchronous rectifier, and detecting whether a shutdown criteria is fulfilled or not. If the shutdown criteria is fulfilled, the method is further includes the step of sending a shutdown signal to a shutdown device.