Abstract:
This invention relates to a process for selectively desulfurizing naphtha. More particularly, a low sulfur naphtha feed containing less than 500 wppm sulfur is hydrodesulfurized using a hydrodesulfurization catalyst and a hydrogen treat gas containing at least about 50 vppm hydrogen sulfide followed by mercaptan removal or conversion.
Abstract:
A process for the selective hydrodesulfurization of olefinic naphtha streams containing a substantial amount of organically bound sulfur and olefins. The olefinic naphtha stream is selectively desulfurized in a first hydrodesulfurization reaction stage. This effluent stream is then contacted with a stripping agent in a H2S removal zone, such as steam or an amine solution, to remove H2S from the effluent stream, thereby reducing the H2S partial pressure of the process stream. The process stream is then subjected to a second desulfurization reaction stage followed by a mercaptan decomposition stage to reduce the content of mercaptan sulfur in the final product stream. In a second embodiment, the effluent stream from the first hydrodesulfurization reaction stage, after being subjected to the H2S removal zone, is fed directly to the mercaptan decomposition stage where total sulfur content and mercaptan sulfur content are reduced in the final product stream.
Abstract translation:一种含有大量有机结合的硫和烯烃的烯烃石脑油流选择性加氢脱硫的方法。 烯烃石脑油流在第一加氢脱硫反应阶段选择性脱硫。 然后将该流出物流与H 2 S 2 S去除区(例如蒸汽或胺溶液)中的汽提剂接触以从流出物流中除去H 2 S, 从而降低工艺流的H 2 S 2分压。 然后将工艺物流进行第二次脱硫反应阶段,随后进行硫醇分解阶段以降低最终产物流中硫醇硫的含量。 在第二个实施方案中,来自第一加氢脱硫反应阶段的经过H2S去除区的流出物流直接进料至硫醇分解阶段,其中总硫含量和硫醇硫含量为 减少了最终产品流。
Abstract:
Polymeric compositions containing a high percentage of bound alkyl ether segments provide matrices and membranes for the controlled release of drugs and medicinal agents. The polymeric compositions are prepared by the polymerization of ethylenically unsaturated alkyl ether containing monomers. Copolymers of ethylenically unsaturated alkyl ether containing monomers with co-monomers are also disclosed. The drug loaded polymeric compositions of this invention find particular utility in the construction of controlled release devices.
Abstract:
This invention relates to the hydroprocessing of naphtha with removal of mercaptan from product. Naphtha feedstock is hydrotreated and hydrocracked. Sulfur-containing contaminants, notably C5+ recombinant mercaptans, are then selectively removed from the hydrocracked naphtha by selective extraction or adsorption.
Abstract:
An ocular device for insertion into an eye is provided and includes a body having an anterior surface and a posterior surface for placement on one of superior sclera and inferior sclera of the eye. The posterior surface is defined by a base curve that is substantially identical to a radius of curvature of the one of the superior sclera and inferior sclera of the eye. In one embodiment, the ocular device serves as an ocular drug delivery system and contains an active pharmaceutical agent, a lubricant, etc. In a second embodiment the ocular device can be constructed in such a manner to treat a wide variety of ocular conditions and diseases.
Abstract:
A process for the selective hydrodesulfurization of olefinic naphtha streams containing a substantial amount of organically-bound sulfur and olefins. The olefinic naphtha stream is selectively desulfurized in a hydrodesulfurization reaction stage. The hydrodesulfurized effluent stream is separated into a light and heavy liquid fraction and the heavier fraction is further processed in a mercaptan destruction reaction stage to reduce the content of mercaptan sulfur in the final product.
Abstract:
A device for delivering an active agent to target tissue at a site that includes a bodily fluid includes a body having a first exterior surface including a first section having a local, discrete recessed area formed in the body for holding the active agent. The body includes a surface flow feature in the form of a canal that is formed in the body and is recessed relative to the exterior surface. The surface flow feature interfaces with the first section and the local recessed area and is configured so as to guide or modify flow of the bodily fluid relative to the body such that fluid communication is provided between the bodily fluid and the local recessed area. The local recessed area is recessed relative to at least a portion of the canal.
Abstract:
Disclosed herein is a method of preparing a rotating member to enhance bearing durability comprising, applying a metal material to a surface of the rotor orthogonal to a longitudinal axis of the rotor, the material having a chromium content less than a chromium content of the rotating member, and surfacing said metal material orthogonal to the axis of the rotor. Further disclosed herein is an enhanced bearing durability rotating member comprising, a rotor with a metal material surface orthogonal to a longitudinal axis of the rotor having less chromium content than the rotor, and a boundary layer between the metal material surface and the rotor orthogonal to the axis of the rotor.
Abstract:
A process for the selective hydrodesulfurization of olefinic naphtha streams containing a substantial amount of organically-bound sulfur and olefins. The olefinic naphtha stream is selectively desulfurized in a first hydrodesulfurization stage. The effluent stream from this first stage is sent to a separation zone wherein a lower boiling naphtha stream and a higher boiling naphtha stream are produced. The lower boiling naphtha stream is sent through at least two more separation zones, each at a lower temperature than the preceding separation stage. The higher boiling naphtha stream, which contains most of the sulfur moieties, is passed to a second hydrodesulfurization stage wherein at least a fraction of the sulfur moieties are removed.
Abstract:
A distillate fuel feed is hydrotreated to remove heteroatoms and then separated into light and heavy hydrotreated fractions, with the heavy fraction catalytically dewaxed to improve low temperature properties. The hydrotreating and dewaxing are conducted in separate stages, which may be in the same reactor vessel. Fresh hydrogen may be passed into the dewaxing stage, with the dewaxing stage gaseous effluent then passed into the hydrotreating stage to provide hydrogen for the hydrotreating. Existing hydrotreating reaction vessels and facilities may be retrofitted to add one or more dewaxing stages.