摘要:
Embodiments of the present invention are directed to implantable systems, and methods for use therewith, that monitor and modify a patient's arterial blood pressure without requiring an intravascular pressure transducer. In accordance with an embodiment, for each of a plurality of periods of time, there is a determination one or more metrics indicative of pulse arrival time (PAT), each of which are indicative of how long it takes for the left ventricle to generate a pressure pulsation that travels from the patient's aorta to a location remote from the patient's aorta. Based on the one or more metrics indicative of PAT, the patient's arterial blood pressure is estimated. Changes in the arterial blood pressure are monitored over time. Additionally, the patient's arterial blood pressure can be modified by initiating and/or adjusting pacing and/or other therapy based on the estimates of the patient's arterial blood pressure and/or monitored changes therein.
摘要:
In specific embodiments, a method for estimating a patient's central arterial blood pressure (CBP) for use with an implantable system, comprises (a) using an implanted sensor at a first site to obtain a first signal indicative of changes in arterial blood volume at the first site, the first site being along one or more peripheral arterial structures of the patient, (b) using an implanted sensor at a second site to obtain a second signal indicative of changes in arterial blood volume at the second site, the second site being a distance from the first site downstream along an arterial path of the peripheral arterial structure of the patient, and (c) using implanted electrodes to obtain a signal indicative of electrical activity of the patient's heart. The method further comprises (d) determining a time t1 from a predetermined feature of the signal indicative of electrical activity to a predetermined feature of one of the first and second signals, the time t1 being a first pulse arrival time (PAT1) indicative of how long it takes a pulse wave to travel from the patient's aorta to one of the first and second sites, (e) determining a time t2 from a predetermined feature of the signal indicative of electrical activity to a predetermined feature of the other of the first and second signals, the time t2 being a second pulse arrival time (PAT2) indicative of how long it takes a pulse wave to travel from the patient's aorta to the other of the first and second sites, and (f) estimating the patient's central arterial blood pressure (CBP) based on the first pulse arrival time (PAT1) and the second pulse arrival time (PAT2).
摘要:
Embodiments of the present invention are directed to implantable systems, and methods for use therewith, that monitor and modify a patient's arterial blood pressure without requiring an intravascular pressure transducer. In accordance with an embodiment, for each of a plurality of periods of time, there is a determination one or more metrics indicative of pulse arrival time (PAT), each of which are indicative of how long it takes for the left ventricle to generate a pressure pulsation that travels from the patient's aorta to a location remote from the patient's aorta. Based on the one or more metrics indicative of PAT, the patient's arterial blood pressure is estimated. Changes in the arterial blood pressure are monitored over time. Additionally, the patient's arterial blood pressure can be modified by initiating and/or adjusting pacing and/or other therapy based on the estimates of the patient's arterial blood pressure and/or monitored changes therein.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure while a patient's heart is being paced. A signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from a paced cardiac event to one or more predetermined features of the signal indicative of changes in arterial blood volume. Based on at the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure while a patient's heart is being paced. A signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from a paced cardiac event to one or more predetermined features of the signal indicative of changes in arterial blood volume. Based on at the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
Certain embodiments of the present invention are related to an implantable monitoring device to monitor a patient's arterial blood pressure, where the device is configured to be implanted subcutaneously. The device includes subcutaneous (SubQ) electrodes and a plethysmography sensor. Additionally, the device includes an arterial blood pressure monitor configured to determine at least one value indicative of the patient's arterial blood pressure based on at least one detected predetermined feature of a SubQ ECG and at least one detected predetermined feature of a plethysmography signal. Alternative embodiments of the present invention are directed to a non-implantable monitoring device to monitor a patient's arterial blood pressure based on features of a surface ECG and a plethysmography signal obtained from a non-implanted sensor.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's electromechanical delay (EMD). Paced cardiac events are caused by delivering sufficient pacing stimulation to cause capture to the patient's heart. A cardiogenic impedance (CI) signal, indicative of cardiac contractile activity in response to the pacing stimulation being delivered, is obtained. One or more predetermined features of the CI signal are detected, and a value indicative of the patient's EMD is determined by determining a time between a delivered pacing stimulation and at least one of the detected one or more features of the CI signal.
摘要:
Implantable systems, and methods for use therewith, enable the monitoring of a patient's electromechanical delay (EMD) and arterial blood pressure. Paced cardiac events are caused by delivering sufficient pacing stimulation to cause capture. A cardiogenic impedance (CI) signal, indicative of cardiac contractile activity in response to the pacing stimulation being delivered, is obtained. One or more predetermined features of the CI signal are detected, and a value indicative of the patient's EMD is determined by determining a time between a delivered pacing stimulation and at least one of the detected one or more features of the CI signal. The value indicative of EMD can be used to more accurately determine metrics indicative of pulse arrival time (PAT), which can be used to estimate arterial blood pressure.
摘要:
Certain embodiments of the present invention are related to an implantable monitoring device to monitor a patient's arterial blood pressure, where the device is configured to be implanted subcutaneously. The device includes subcutaneous (SubQ) electrodes and a plethysmography sensor. Additionally, the device includes an arterial blood pressure monitor configured to determine at least one value indicative of the patient's arterial blood pressure based on at least one detected predetermined feature of a SubQ ECG and at least one detected predetermined feature of a plethysmography signal. Alternative embodiments of the present invention are directed to a non-implantable monitoring device to monitor a patient's arterial blood pressure based on features of a surface ECG and a plethysmography signal obtained from a non-implanted sensor.
摘要:
Provided herein are implantable systems, and methods for use therewith, for characterizing a tachycardia and/or selecting treatment for a tachycardia using results of a dominant frequency analysis. One or more electrogram (EGM) signal(s) indicative of cardiac electrical activity are obtained. For at least one of the EGM signal(s) a dominant frequency (DF) analysis is performed, and the results of the DF analysis are used to characterize a tachycardia and/or to select treatment for a tachycardia.